Warning: session_start(): open(/tmp/sess_d8184dae5ae3c7c2648ffb9d1e2f91f9, O_RDWR) failed: No space left on device (28) in /data/wiki/inc/init.php on line 239

Warning: session_start(): Failed to read session data: files (path: ) in /data/wiki/inc/init.php on line 239

Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/auth.php on line 430
Writing /data/wiki/data/cache/d/de2edb2fcb553ea79b79c722a4e13dbc.captchaip failed

Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/actions.php on line 38

Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/lib/tpl/dokuwiki/main.php on line 12
2020-2021:teams:alchemist:hardict:powersum [CVBB ACM Team]

用户工具

站点工具


2020-2021:teams:alchemist:hardict:powersum

到此差别页面的链接

后一修订版
前一修订版
2020-2021:teams:alchemist:hardict:powersum [2020/05/09 09:46]
hardict 创建
2020-2021:teams:alchemist:hardict:powersum [2020/05/09 10:56] (当前版本)
hardict [伯努利数以及生成函数]
行 1: 行 1:
-===== 积分法 ​=====+===== 递推 ​=====
  
 +$令f_{k}(n)=\sum_{i=1}^{n}i^{k}$
 +
 +$$
 +\begin{align}
 +f_{k+1}(n+1) ​
 +& =f_{k+1}(n)+(n+1)^{k+1} &\\
 +& =1+\sum_{i=1}^{n}(i+1)^{k+1} &\\
 +& =1+\sum_{i=1}^{n}\sum_{j=0}^{k+1} \binom{k+1}{j} i^{j} &\\
 +& =1+\sum_{j=0}^{k+1}\binom{k+1}{j} \sum_{i=1}^{n} &\\
 +& =1+\sum_{i=0}^{k+1}\binom{k+1}{i} f_{i}(n) &\\
 +& =1+f_{k+1}(n)+(k+1)f_{k}(n)+\sum_{i=0}^{k-1}\binom{k+1}{i} f_{i}(n) &\\
 +\end{align}
 +$$
 +
 +$得到了:​(k+1)f_{k}(n)=(n+1)^{k+1}-1 - \sum_{i=0}^{k-1}\binom{k+1}{i} f_{i}(n)$
 +
 +$可以写成:​ f_{k-1}(n)=\frac{(n+1)^{k}-1}{k} -
 +\frac{1}{k}\sum_{i=0}^{k-2}\binom{k}{i} f_{i}(n)$
 ===== 拉格朗日插值法 ===== ===== 拉格朗日插值法 =====
  
行 16: 行 34:
  
 ===== 伯努利数以及生成函数 ===== ===== 伯努利数以及生成函数 =====
 +
 +$
 +B_{0}=1,​B_{1}=-\frac{1}{2},​B_{2}=\frac{1}{6}\\\\
 +B_{3}=0,​B_{4}=-\frac{1}{30},​B_{5}=0\\\\
 +B_{6}=\frac{1}{42},​B_{7}=0,​B_{8}=-\frac{1}{30}
 +$
 +
 +$可以利用:​B_{0}=1,​
 +\sum_{i=0}^{n}B_{i}\binom{n+1}{i}=0 ​
 +\Rightarrow B_{n}=-\frac{1}{n+1}\sum_{i=0}^{n-1}B_{i}\binom{n+1}{i}
 +计算$
 +
 +$$
 +\begin{align}
 +& \sum_{i=0}^{n-1}B_{i}\binom{n}{i}=0 &\\
 +& \sum_{i=0}^{n}B_{i}\binom{n}{i}=B_{n} (n > 1)&\\
 +& \sum_{i=0}^{n}\frac{1}{i!(n-i)!}B_{i} = \frac{B_{n}}{n!} (n > 1)&
 +\end{align}
 +$$
 +
 +$
 +考虑C(x)=\sum_{i=0}^{\infty}\frac{B_{i}}{i!}x^{i}\\\\
 +有e^{x}C(x)=C(x)+x \quad (加x是因为n>​1导致第一项缺失,​而n=0时上述等式也是成立的)\\\\
 +得到关于\frac{B_{n}}{n!}的生成函数\frac{x}{e^{x}-1}
 +$
 +
 +故可以利用递推$O(n^{2})$或利用NTT$O(nlogn)$预处理
 +
 +
 +伯努利数与自然数幂和关系为
 +
 +$f_{k}(n-1)
 +=\sum_{i=0}^{n-1}i^{k}
 +=\frac{1}{k+1}\sum_{i=0}^{k}\binom{k+1}{i}B_{i}n^{k+1-i}$
 +
 +
 +$
 +考虑F(x)=\sum_{k=0}^{\infty}(\sum_{i=0}^{n-1}i^{k})\frac{x^{k}}{k!}\\\\
 +F(x)=\sum_{i=0}^{n-1}\sum_{k=0}^{\infty}i^{k}\frac{x^{k}}{k!}=\sum_{i=0}^{n-1}e^{ix}=\frac{e^{nx}-1}{e^{x}-1}\\\\
 +注意到C(x)=\frac{x}{e^{x}-1},​F(x)=C(x)\frac{e^{nx}-1}{x},​
 +\frac{e^{nx}-1}{x}=\sum_{i=0}^{\infty}\frac{n^{i+1}x^{i}}{(i+1)!}\\\\
 +F(x)中x^{k}系数\frac{f_{k}(n-1)}{k!}=\sum_{i+j=k}\frac{B_{i}}{i!}\frac{n^{j+1}}{(j+1)!}即可得到上述公式
 +$
2020-2021/teams/alchemist/hardict/powersum.1588988815.txt.gz · 最后更改: 2020/05/09 09:46 由 hardict