Warning: session_start(): open(/tmp/sess_8c6652121a5c9a7aa2c93dbadfd1e41f, O_RDWR) failed: No space left on device (28) in /data/wiki/inc/init.php on line 239

Warning: session_start(): Failed to read session data: files (path: ) in /data/wiki/inc/init.php on line 239

Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/auth.php on line 430

Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/actions.php on line 38

Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/lib/tpl/dokuwiki/main.php on line 12
2020-2021:teams:alchemist:weekly_digest_10 [CVBB ACM Team]

用户工具

站点工具


2020-2021:teams:alchemist:weekly_digest_10

到此差别页面的链接

两侧同时换到之前的修订记录 前一修订版
后一修订版
前一修订版
2020-2021:teams:alchemist:weekly_digest_10 [2020/08/14 17:44]
hardict [龙鹏宇 Hardict]
2020-2021:teams:alchemist:weekly_digest_10 [2020/08/14 22:11] (当前版本)
maxdumbledore
行 89: 行 89:
   - $dp[i][j][0/​1]$代表前$i$个线段中钦定的$X$为$j$,是/​否有一个线段的右端点为$X$   - $dp[i][j][0/​1]$代表前$i$个线段中钦定的$X$为$j$,是/​否有一个线段的右端点为$X$
   - $dp[i][j][0/​1]=dp[i-1][j][0/​1]\ (j<L[i] \lor j>R[i])$   - $dp[i][j][0/​1]=dp[i-1][j][0/​1]\ (j<L[i] \lor j>R[i])$
-  - $dp[i][j][0/1]=dp[i-1][j][0/1]*2+(j-L[i]^2)\ (L[i]\le j<​R[i])$ +  - $dp[i][j][0]=dp[i-1][j][0]\times ​2+(j-L[i])^2,​dp[i][j][1]=dp[i-1][j][1]\times 2\ (L[i]\le j<​R[i])$ 
-  - $dp[i][R[i]][0]=dp[i-1][R[i]][0]+  - $dp[i][R[i]][0]=dp[i-1][R[i]][0],dp[i][R[i]][1]=dp[i-1][R[i]][0]+dp[i-1][R[i]][1]\times ​2+(R[i]-L[i])^2$
-  - $dp[i][R[i]][1]=dp[i-1][R[i]][0]+dp[i-1][R[i]][1]*2+(R[i]-L[i])^2$+
  
 最后使用线段树或其他数据结构就可以将该$dp$优化到$O(n\log n)$ 最后使用线段树或其他数据结构就可以将该$dp$优化到$O(n\log n)$
行 104: 行 103:
  
 === 来源: === === 来源: ===
 +
 +[[http://​acm.hdu.edu.cn/​showproblem.php?​pid=6390|HDU 6390]]
  
 === 标签: === === 标签: ===
 +
 +莫比乌斯反演
  
 === 题意: === === 题意: ===
  
 +$G_u(a,​b)=\frac{\varphi{ab}}{\varphi{a}\varphi{b}}$
 +
 +求解$\sum_{i=1}^{n}\sum_{j=1}^{m}G_u(i,​j)$
  
 === 题解: === === 题解: ===
  
-=== 评论: ​===+$gcd(a,b)=d,​\varphi(ab)=\varphi(a)\varphi(b)\frac{d}{\varphi(d)}$ 
 + 
 +$G_u(a,b)=\frac{gcd(a,​b)}{\varphi(gcd(a,​b))}$ 
 + 
 +$ans=\sum_{d}\frac{d}{\varphi(d)}\sum_{a,​b}[gcd(a,​b)==d]$,可以看出是经典莫比乌斯反演问题 
 + 
 +时间比较紧,需要线性预处理$1\sim n$逆元,进一步$\sum_{a=1}^n \sum_{b=1}^m [gcd(a,​b)==d]=\sum_{i=1}^\frac{n}{d}\sum_{j=1}^\frac{m}{d}[gcd(i,​j)==1]$,可以整除分块进一步优化 
  
 ===== 肖思炀 MountVoom ===== ===== 肖思炀 MountVoom =====
2020-2021/teams/alchemist/weekly_digest_10.1597398259.txt.gz · 最后更改: 2020/08/14 17:44 由 hardict