Warning: session_start(): open(/tmp/sess_5aec31b16486001d9577428f118d2019, O_RDWR) failed: No space left on device (28) in /data/wiki/inc/init.php on line 239

Warning: session_start(): Failed to read session data: files (path: ) in /data/wiki/inc/init.php on line 239

Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/auth.php on line 430

Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/actions.php on line 38

Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/lib/tpl/dokuwiki/main.php on line 12
2020-2021:teams:alchemist:weekly_digest_7 [CVBB ACM Team]

用户工具

站点工具


2020-2021:teams:alchemist:weekly_digest_7

到此差别页面的链接

两侧同时换到之前的修订记录 前一修订版
后一修订版
前一修订版
2020-2021:teams:alchemist:weekly_digest_7 [2020/07/24 14:43]
hardict [龙鹏宇 Hardict]
2020-2021:teams:alchemist:weekly_digest_7 [2020/07/24 20:16] (当前版本)
hardict [题目]
行 1: 行 1:
 +====== Summer Tranning Week 2 ======
 +
 +2020/07/17 2015 ACM-ICPC Asia Beijing Regional Contest ''​pro 7/7/10 rank 9/???''​
 +
 +2020.07.18 2020牛客暑期多校训练营(第三场) ''​pro 8/9/12 rank 49/???''​
 +
 +2020.07.20 2020牛客暑期多校训练营(第四场) ''​pro 5/6/10 rank 18/???''​
 +
 +===== Max.D. =====
 +
 +==== 专题 ====
 +
 +广义后缀自动机
 +
 +==== 比赛 ====
 +
 +百度之星初赛1
 +
 +TopCoder SRM 788 Round1
 +
 +Codeforces 658 Div1
 +
 +Codeforces 659 Div1
 +
 +==== 题目 ====
 +
 +
 +
 +===== Hardict =====
 +
 +==== 专题 ====
 +
 +正在学习$O(n^{\frac{2}{3}})$的$min25$
 +
 +==== 比赛 ====
 +
 +百度之星初赛1
 +
 +==== 题目 ====
 +
 +[[https://​vjudge.net/​contest/​355433#​problem/​B|线性递推]]
 +
 +[[http://​acm.hdu.edu.cn/​showproblem.php?​pid=6088|组合+卷积]]
 +===== MountVoom =====
 +
 +==== 专题 ====
 +
 +
 +
 +==== 比赛 ====
 +
 +这周训练比较密集,​摸了
 +
 +==== 题目 ====
 +
 +
  
 ====== 个人总结 ====== ====== 个人总结 ======
 +
 ===== 陈铭煊 Max.D. ===== ===== 陈铭煊 Max.D. =====
  
行 90: 行 147:
 =\sum_{j=1}^{n}\sum_{k=1}^{\frac{n}{j}}h(j)g(k) =\sum_{j=1}^{n}\sum_{k=1}^{\frac{n}{j}}h(j)g(k)
 =\sum_{j=1}^{n}h(j)G(\frac{n}{j}),​G(n)=\sum_{i=1}^{n}g(i)$ =\sum_{j=1}^{n}h(j)G(\frac{n}{j}),​G(n)=\sum_{i=1}^{n}g(i)$
 +
 +//​ps://​在杜教筛中,​我们目标函数是$G()$,​选取合适的$h$并算出合适的$f$即可提取$j=1$项计算
  
 注意到$f(p)=g(p)+h(p)$,​考虑令$g(i)=\sum_{d|i}d=\sigma_{1}(i),​h(p)=0$ 注意到$f(p)=g(p)+h(p)$,​考虑令$g(i)=\sum_{d|i}d=\sigma_{1}(i),​h(p)=0$
2020-2021/teams/alchemist/weekly_digest_7.1595573022.txt.gz · 最后更改: 2020/07/24 14:43 由 hardict