两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
2020-2021:teams:die_java:weeksummary10 [2020/08/14 15:23] fyhssgss [傅云濠] |
2020-2021:teams:die_java:weeksummary10 [2020/08/14 16:43] (当前版本) wxg [王兴罡] |
||
---|---|---|---|
行 13: | 行 13: | ||
====== 每周推荐 ====== | ====== 每周推荐 ====== | ||
fyh: | fyh: | ||
- | \\ 题目大意: | + | \\ 题目大意:给一个无向图,你要不在图中找到一个长度大于等于$\lceil \frac{n}{2} \rceil$ 的简单路径,要不就找若干个二元组(其中这些二元组的元素不能重复,至少要多于等于$\lceil \frac{n}{2} \rceil$ ),使得任意两个二元组组成的子图,至多有两条边。 |
- | \\ tag: | + | \\ tag:dfs树,构造 |
- | \\ 做法: | + | \\ 做法:随便找一点开始求他的dfs树,如果dfs树中有深度大于等于$\lceil \frac{n}{2} \rceil$ 的点,就直接输出即可,否则就找所有深度相同的点,两两配对,一定能保证配出$\lceil \frac{n}{4} \rceil$ 对。怎么证明呢? |
- | \\ comment: | + | 先证这任意两个二元组组成的子图吧,根据dfs树的性质,**所有非树边一定是祖先连往子孙,不可能存在子树之间的连边** ,深度相同的点显然是属于两个子树,所以保证两个二元组$(a,b),(c,d)$ 其中$deep[a]=deep[b],deep[c]=deep[d]$ 令$deep[a]<deep[c]$,a和b 不可能连边,c和d不可能连边,那两条边只可能是a和c,b和d为父子关系的时候才可以算上。 |
+ | 再证一定大于$\lceil \frac{n}{4} \rceil$ 对,因为不存在深度大于$\lceil \frac{n}{2} \rceil$ 了,所以最大深度不过$\lceil \frac{n}{2} \rceil$ ,每一个深度只有当有0个或者1个节点的时候才会放弃这个深度,根据抽屉原理一定能选出$\lceil \frac{n}{4} \rceil$ 对满足。 | ||
+ | \\ comment:虽然这题出的有点强行,但是利用dfs树的一些性质还是十分巧妙 | ||
wxg: | wxg: | ||
- | \\ 题目大意: | + | \\ 题目大意 给了一个度数小于10的图,问你有多少个排列${c_n}$,满足度数为 $i$ 的点就往第 $c_i$ 个边走,每个点最终都能走回自己 |
- | \\ tag: | + | \\ tag: 图论,思维 |
- | \\ 做法: | + | \\ 做法: 发现给出排列的图最后都是若干个环,所以每个点入度出度都是1,我们可以用bitset判断 $c_i$ 和 $c_j$ 是否有矛盾,最后枚举排列算答案即可 |
- | \\ comment: | + | \\ comment: 判断图是否成环的方法非常巧妙 |
hxm: | hxm: | ||
- | \\ 题目大意: | + | \\ 题目大意:一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。 |
- | \\ tag: | + | 现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间l,r,求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。 |
+ | \\ tag:主席树 | ||
\\ 做法: | \\ 做法: | ||
- | \\ comment: | + | 假如我们已经求出一个集合所能凑出连续数的最大区间$[1,max]$,那么此时答案为$max + 1$ |
+ | 那么我们此时加入一个数$x$,假若$x > max + 1$,显然对答案没有影响 | ||
+ | 但是假若$x \le max + 1$,显然最大区间变为$[1,max + x]$,答案变为$max + x + 1$ | ||
+ | |||
+ | 那么我们就能得出这题的解法了 | ||
+ | 将区间内的数排序,一开始$ans = 0$,然后逐一将数加入集合之中, 一但出现$x > max + 1$的情况,由于是有序的,后面的数也无法更新答案,此时答案就是最优的 | ||
+ | 但是暴力排序枚举显然不行,我们可以用主席树优化 | ||
+ | 每求出一个新的区间$[1,max]$后,$[1,max + 1]$内的数都可以参与贡献,那么此时新的区间为$[1,\sum a_i]$,其中$a_i \le max + 1$ | ||
+ | 当$max$不变时算法结束 | ||
+ | 显然$max$是成倍增长的,所以复杂度为$O(nlog^2(\sum a_i))$ | ||
+ | \\ comment:贪心思路+数据结构优化 | ||
---- | ---- | ||
行 35: | 行 48: | ||
====== 傅云濠 ====== | ====== 傅云濠 ====== | ||
+ | 比赛:[[https://www.cnblogs.com/FYH-SSGSS/p/13480766.html|Codeforces Round #663 (Div. 2)]] | ||
+ | \\ 补第九场J 第十场J | ||
+ | 整理了树上哈希的板子 | ||
---- | ---- | ||
====== 王兴罡 ====== | ====== 王兴罡 ====== | ||
- | 比赛:[[https://atcoder.jp/contests/abc174|atcoderAtCoder Beginner Contest 174]] | + | 补了cf664的部分题 |
---- | ---- | ||
====== 黄旭民 ====== | ====== 黄旭民 ====== | ||
- | 比赛:[[https://atcoder.jp/contests/abc174|atcoderAtCoder Beginner Contest 174]] | + | 比赛:无 |
- | \\ 整理:整理了点分治板子 | + | \\ 整理单纯形板子 |