2020-2021:teams:farmer_john:裴蜀定理证明 [2020/09/05 15:42] jjleo 创建 |
2020-2021:teams:farmer_john:裴蜀定理证明 [2020/09/05 15:42] (当前版本) jjleo |
||
---|---|---|---|
行 1: | 行 1: | ||
- | 裴蜀定理:若ax+by = z,则 gcd(a,b)| z | + | 裴蜀定理:若ax+by = z,则 gcd(a,b)| z\\ |
- | 再顺手证明一下裴蜀定理: | + | 再顺手证明一下裴蜀定理:\\ |
- | 设k = gcd(a,b),则 k | a, k | b,根据整除的性质,有 k | (ax+by) | + | 设k = gcd(a,b),则 k | a, k | b,根据整除的性质,有 k | (ax+by)\\ |
- | 设 s为ax+by的最小正数值 | + | 设 s为ax+by的最小正数值\\ |
- | 再设 q = [a / s](a整除s的值);r = a mod s = a-q(ax+by) = a(1 - qx)+b(-qy); | + | 再设 q = [a / s](a整除s的值);r = a mod s = a-q(ax+by) = a(1 - qx)+b(-qy);\\ |
- | 由此可见r也为a,b的线性组合;(ax+by称为a,b的线性组合) | + | 由此可见r也为a,b的线性组合;(ax+by称为a,b的线性组合)\\ |
- | 又因为s为a,b的线性组合的最小正数值,0<= r < s,所以r的值为0,即 a mod s = r =0;s | a; | + | 又因为s为a,b的线性组合的最小正数值,0<= r < s,所以r的值为0,即 a mod s = r =0;s | a;\\ |
- | 同理可得 s | b,则 s | k; | + | 同理可得 s | b,则 s | k;\\ |
- | 又因为 k | (ax+by),s为ax+by的最小正数值,所以 k | s; | + | 又因为 k | (ax+by),s为ax+by的最小正数值,所以 k | s;\\ |
- | 因为 s | k,k | s,所以s = k; | + | 因为 s | k,k | s,所以s = k;\\ |
- | 原命题得证。 | + | 原命题得证。\\ |
[[https://blog.csdn.net/leader_one/article/details/75298966?utm_medium=distribute.pc_aggpage_search_result.none-task-blog-2~all~first_rank_v2~rank_v25-2-75298966.nonecase&utm_term=%E8%A3%B4%E8%9C%80%E5%AE%9A%E7%90%86%E7%9A%84%E8%AE%B2%E8%A7%A3|原链接]] | [[https://blog.csdn.net/leader_one/article/details/75298966?utm_medium=distribute.pc_aggpage_search_result.none-task-blog-2~all~first_rank_v2~rank_v25-2-75298966.nonecase&utm_term=%E8%A3%B4%E8%9C%80%E5%AE%9A%E7%90%86%E7%9A%84%E8%AE%B2%E8%A7%A3|原链接]] |