这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
2020-2021:teams:farmer_john:2020_ccpc_网络赛 [2020/09/23 22:31] 2sozx [记录] |
2020-2021:teams:farmer_john:2020_ccpc_网络赛 [2020/10/07 21:52] (当前版本) 2sozx [题解] |
||
---|---|---|---|
行 1: | 行 1: | ||
- | ======比赛名称====== | + | ======2020 CCPC 网络赛====== |
[[http://acm.hdu.edu.cn/contests/contest_show.php?cid=909|比赛链接]] | [[http://acm.hdu.edu.cn/contests/contest_show.php?cid=909|比赛链接]] | ||
=====A.===== | =====A.===== | ||
- | **upsolved by** | + | **upsolved by 2sozx** |
====题意==== | ====题意==== | ||
+ | 给定一个开始全白的二维平面,每次操作选择一个矩形将其涂黑,矩形下面紧贴 $x$ 轴,问每次操作过后黑色区域的周长为多少。操作次数 $n \le 2 \times 10^5$ | ||
====题解==== | ====题解==== | ||
+ | 由于矩形紧贴 $x$ 轴,矩形上下两条边边长可以用线段覆盖来维护,现在考虑左右两条边的边长。易知操作是一个区间取 $\max$ ,每次的和为 $\sum_{i = 1}^{n - 1}|a_i - a_{i + 1}|$ ,维护区间 $a_i,a_{i + 1}$ 其中一个是最小值的个数即可,区间 $\max$ 用吉老师线段树维护即可。 | ||
=====B.===== | =====B.===== | ||
**upsolved by** | **upsolved by** | ||
行 15: | 行 15: | ||
=====C.===== | =====C.===== | ||
- | **upsolved by ** | + | **solved by 2sozx** |
====题意==== | ====题意==== | ||
+ | 签到题 | ||
====题解==== | ====题解==== | ||
+ | 签到题 | ||
=====D.===== | =====D.===== | ||
**upsolved by ** | **upsolved by ** | ||
行 23: | 行 25: | ||
====题解==== | ====题解==== | ||
=====E.===== | =====E.===== | ||
- | **upsolved by** | + | **solved by 2sozx Bazoka13 JJLeo** |
====题意==== | ====题意==== | ||
+ | $t$ 组询问,每组询问给出 $n$ 个数,两个人进行游戏,每次每个人可以选择一个数 $x$ ,若存在 $x = p \times q$ 且 $p \not = 1$ 可以将 $x$ 分成 $p$ 个 $q$ ,无法对 $1$ 进行操作, 问先手赢还是后手赢。$t \le 10^4, x\le 10^9, n\le 10$ | ||
====题解==== | ====题解==== | ||
+ | 将每个数的质因数个数算出来 $p^i$ 与 $p^j$ $i \not = j$ 且 $p \not = 2$ 时算两个,之后用 $Nim$ 游戏的方法算就行。<del>别问为什么</del> | ||
=====F.===== | =====F.===== | ||
**upsolved by ** | **upsolved by ** | ||
行 55: | 行 57: | ||
====题解==== | ====题解==== | ||
+ | |||
+ | =====K.===== | ||
+ | **solved by 2sozx** | ||
+ | ====题意==== | ||
+ | 给定矩阵 $A,K$,定义矩阵 $C$ 为 $C_{x,y}=\sum_{i=1}^{min(n-x+1,3)}\sum_{j=1}^{min(n-y+1,3)}A_{x+i-1,y+j-1}K_{i,j}$ 定义 $C^{m}(A,K)=C(C^{m-1}(A,K),K)$ 矩阵 $K$ 中元素和为 $1$ 求 $\lim\limits_{m \to \infty} C$ ,矩阵 $K$ 为 $3\times 3$ | ||
+ | |||
+ | |||
+ | ====题解==== | ||
+ | 从 $C$ 的最后一位开始推很容易得出当且仅当 $K(1,1) = 1$ 时 $\lim\limits_{m \to \infty} C$ 非零,否则 $C = A$ | ||
+ | |||
+ | |||
+ | =====L.===== | ||
+ | **upsolved by ** | ||
+ | ====题意==== | ||
+ | |||
+ | ====题解==== | ||
+ | |||
+ | =====M.===== | ||
+ | **upsolved by ** | ||
+ | ====题意==== | ||
+ | |||
+ | ====题解==== | ||
+ | |||
=====记录===== | =====记录===== | ||
before:准备视奸全场结果后排没位置了。书接上文:CSK恰了意面,身体不适\\ | before:准备视奸全场结果后排没位置了。书接上文:CSK恰了意面,身体不适\\ |