这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
2020-2021:teams:farmer_john:2sozx:数学:知识点 [2020/05/15 15:26] 2sozx [拉格朗日乘子法] |
2020-2021:teams:farmer_john:2sozx:数学:知识点 [2020/06/12 22:13] (当前版本) 2sozx [NOI2012骑行川藏] |
||
---|---|---|---|
行 1: | 行 1: | ||
+ | **格式**: | ||
+ | - 向量建议写成 $\boldsymbol{x}_{0}$ | ||
+ | |||
+ | **内容**: | ||
+ | - 没有例题吗 | ||
+ | |||
=====知识点===== | =====知识点===== | ||
====前言==== | ====前言==== | ||
行 5: | 行 11: | ||
对于没有限制条件的多元函数来说,只需要对函数求导即可,但是若有了限制条件,即函数的值要在一定条件下才能取到,则需要用到拉格朗日乘子法。 | 对于没有限制条件的多元函数来说,只需要对函数求导即可,但是若有了限制条件,即函数的值要在一定条件下才能取到,则需要用到拉格朗日乘子法。 | ||
- | ====前置知识==== | ||
- | 多元函数的求导\\ | ||
- | 多元函数极值的概念\\ | ||
- | 二次型矩阵 | ||
====引理==== | ====引理==== | ||
- | 设函数 $f(\vec{x})$ ,${\vec{\varphi}}(\vec{x})=({\varphi}_1(\vec{x}),{\varphi}_2(\vec{x}),…,{\varphi}_m(\vec{x}))$ 在区域 $D\subset \mathbb{R}^n (m<n)$ 内具有各个连续偏导数,再设 ${\vec{x_0}}=({x_1}^0,{x_2}^0,…,{x_n}^0)\in D$ 为$f(\vec{x})$ 在约束条件 $$\begin{cases}{\varphi}_1(\vec{x})=0 \\{\varphi}_2(\vec{x})=0 \\…\\{\varphi}_m(\vec{x})=0\end{cases}$$下的极值点,并且 ${\varphi}'(x_0)$ 的秩为 $m$ ,则存在常数 ${\lambda}_1,{\lambda}_2,…,{\lambda}_3{\in}\mathbb{R}$ ,使得在 $\vec{x_0}$ 处成立下述等式:$$\begin{cases}{\frac{\partial{f(\vec{x_0})}}{\partial{x_i}}}+\sum_{j=1}^m {\lambda}_j \frac{\partial{\varphi}_j(\vec{x_0})}{\partial{x_i}}=0\quad (i=1,2,…,n) \\ \\ {\varphi}_j(\vec{x_0})=0\qquad\qquad\qquad\qquad (j=1,2,…,m)\end{cases}$$ | + | 设函数 $f(\boldsymbol{x})$ ,${\boldsymbol{\varphi}}(\boldsymbol{x})=({\varphi}_1(\boldsymbol{x}),{\varphi}_2(\boldsymbol{x}),\cdots,{\varphi}_m(\boldsymbol{x}))$ 在区域 $D\subset \mathbb{R}^n (m<n)$ 内具有各个连续偏导数,再设 ${\boldsymbol{x_0}}=({x_1}^0,{x_2}^0,\cdots,{x_n}^0)\in D$ 为$f(\boldsymbol{x})$ 在约束条件 $$\begin{cases}{\varphi}_1(\boldsymbol{x})=0 \\{\varphi}_2(\boldsymbol{x})=0 \\ \vdots\\{\varphi}_m(\boldsymbol{x})=0\end{cases}$$下的极值点,并且 ${\varphi}'(x_0)$ 的秩为 $m$ ,则存在常数 ${\lambda}_1,{\lambda}_2,\cdots,{\lambda}_3{\in}\mathbb{R}$ ,使得在 $\boldsymbol{x_0}$ 处成立下述等式:$$\begin{cases}{\frac{\partial{f(\boldsymbol{x_0})}}{\partial{x_i}}}+\sum_{j=1}^m {\lambda}_j \frac{\partial{\varphi}_j(\boldsymbol{x_0})}{\partial{x_i}}=0\quad (i=1,2,\cdots,n) \\ \\ {\varphi}_j(\boldsymbol{x_0})=0\qquad\qquad\qquad\qquad (j=1,2,\cdots,m)\end{cases}$$ |
====证明==== | ====证明==== | ||
- | 由于 ${\varphi'(\vec{x_0})}$ 的秩为 $m$ ,我们不妨设行列式$$\frac{\partial(\varphi_1,\varphi_2,…,\varphi_m)}{\partial(x_{n-m+1},x_{n-m+2},…,x_n)}$$在 $x_0$ 处不为零。 | + | 由于 ${\varphi'(\boldsymbol{x_0})}$ 的秩为 $m$ ,我们不妨设行列式$$\frac{\partial(\varphi_1,\varphi_2,\cdots,\varphi_m)}{\partial(x_{n-m+1},x_{n-m+2},\cdots,x_n)}$$在 $x_0$ 处不为零。 |
- | 因此,在 $\vec{x_0}$ 的某个邻域内唯一确定一组具有各个连续偏导数的隐函数$$\begin{cases}x_{n-m+1}=g_1(x_1,x_2,…,x_{n-m}),\\ x_{n-m+2}=g_2(x_1,x_2,…,x_{n-m}),\\ ……\\ x_{n}=g_m(x_1,x_2,…,x_{n-m}),\\\end{cases}$$满足 ${x_j}^0=g_j({x_1}^0,{x_2}^0,…,{x_n}^0)(j=n-m+1,n-m+2,…,n)$ 且有$$\varphi_k(x_1,…,x_{n-m},g_1(x_1,x_2,…,x_{n-m}),…,g_m(x_1,x_2,…,x_{n-m}))=0$$ | + | 因此,在 $\boldsymbol{x_0}$ 的某个邻域内唯一确定一组具有各个连续偏导数的隐函数$$\begin{cases}x_{n-m+1}=g_1(x_1,x_2,\cdots,x_{n-m}),\\ x_{n-m+2}=g_2(x_1,x_2,\cdots,x_{n-m}),\\ \vdots\\ x_{n}=g_m(x_1,x_2,\cdots,x_{n-m}),\\\end{cases}$$满足 ${x_j}^0=g_j({x_1}^0,{x_2}^0,\cdots,{x_n}^0)(j=n-m+1,n-m+2,\cdots,n)$ 且有$$\varphi_k(x_1,\cdots,x_{n-m},g_1(x_1,x_2,\cdots,x_{n-m}),\cdots,g_m(x_1,x_2,\cdots,x_{n-m}))=0$$ |
- | 将隐函数组代入 $f(\vec{x_0})$ 得$$f(x_1,…,x_{n-m},g_1(x_1,x_2,…,x_{n-m}),…,g_m(x_1,x_2,…,x_{n-m}))$$ | + | 将隐函数组代入 $f(\boldsymbol{x_0})$ 得$$f(x_1,\cdots,x_{n-m},g_1(x_1,x_2,\cdots,x_{n-m}),\cdots,g_m(x_1,x_2,\cdots,x_{n-m}))$$ |
- | 因此, $\vec{x_0}$ 是条件极值点转化为 $({x_1}^0,{x_2}^0,…,{x_{n-m}}^0)$ 为上述函数的通常极值点。\\ | + | 因此, $\boldsymbol{x_0}$ 是条件极值点转化为 $({x_1}^0,{x_2}^0,\cdots,{x_{n-m}}^0)$ 为上述函数的通常极值点。\\ |
- | 令 $\vec{x_0}'$ 则对 $i=1,2,…n-m$ 有$$\frac{\partial{f(\vec{x_0})}}{\partial{x_i}}+\frac{\partial{f(\vec{x_0})}}{\partial{x_{n-m+1}}}{\cdot}\frac{\partial{g_1(\vec{x_0}')}}{\partial{x_i}}+…+\frac{\partial{f(\vec{x_0})}}{\partial{x_n}}{\cdot}\frac{\partial{g_m(\vec{x_0}')}}{\partial{x_i}}=0$$ | + | 令 $\boldsymbol{x_0}'$ 则对 $i=1,2,\cdots,n-m$ 有$$\frac{\partial{f(\boldsymbol{x_0})}}{\partial{x_i}}+\frac{\partial{f(\boldsymbol{x_0})}}{\partial{x_{n-m+1}}}{\cdot}\frac{\partial{g_1(\boldsymbol{x_0}')}}{\partial{x_i}}+\cdots+\frac{\partial{f(\boldsymbol{x_0})}}{\partial{x_n}}{\cdot}\frac{\partial{g_m(\boldsymbol{x_0}')}}{\partial{x_i}}=0$$ |
- | 令 $\vec{g}(\vec{x}'=(g_1(\vec{x}'),g_2(\vec{x}'),…,g_m(\vec{x}'))^T$ ,其中 $\vec{x}'=(x_1,x_2,…,x_{n-m})$。将上述 $n-m$ 个等式写成向量形式,有$$\left(\frac{\partial{f(\vec{x_0})}}{\partial{x_1}},…,\frac{\partial{f(\vec{x_0})}}{\partial{x_{n-m}}}\right)+\left(\frac{\partial{f(\vec{x_0})}}{\partial{x_{n-m+1}}},…,\frac{\partial{f(\vec{x_0})}}{\partial{x_n}}\right)\vec{g}(\vec{x_0}')=0\quad \left(1\right)$$ | + | 令 $\boldsymbol{g}(\boldsymbol{x}'=(g_1(\boldsymbol{x}'),g_2(\boldsymbol{x}'),\cdots,g_m(\boldsymbol{x}'))^T$ ,其中 $\boldsymbol{x}'=(x_1,x_2,\cdots,x_{n-m})$。将上述 $n-m$ 个等式写成向量形式,有$$\left(\frac{\partial{f(\boldsymbol{x_0})}}{\partial{x_1}},\cdots,\frac{\partial{f(\boldsymbol{x_0})}}{\partial{x_{n-m}}}\right)+\left(\frac{\partial{f(\boldsymbol{x_0})}}{\partial{x_{n-m+1}}},\cdots,\frac{\partial{f(\boldsymbol{x_0})}}{\partial{x_n}}\right)\boldsymbol{g}(\boldsymbol{x_0}')=0\quad \tag{1}$$ |
- | 由于$$\vec{g}(\vec{x_0}')=-\left(\begin{array} {}\frac{\partial{\varphi_1(\vec{x_0})}}{\partial{x_{n-m+1}}} & \frac{\partial{\varphi_1(\vec{x_0})}}{\partial{x_{n-m+2}}} & \cdots & \frac{\partial{\varphi_1(\vec{x_0})}}{\partial{x_n}}\\ \frac{\partial{\varphi_2(\vec{x_0})}}{\partial{x_{n-m+1}}} & \frac{\partial{\varphi_2(\vec{x_0})}}{\partial{x_{n-m+2}}} & \cdots & \frac{\partial{\varphi_2(\vec{x_0})}}{\partial{x_n}}\\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial{\varphi_m(\vec{x_0})}}{\partial{x_{n-m+1}}} & \frac{\partial{\varphi_m(\vec{x_0})}}{\partial{x_{n-m+2}}} & \cdots & \frac{\partial{\varphi_m(\vec{x_0})}}{\partial{x_n}}\end{array}\right)^{-1} | + | 由于$$\boldsymbol{g}(\boldsymbol{x_0}')=-\left(\begin{array} {}\frac{\partial{\varphi_1(\boldsymbol{x_0})}}{\partial{x_{n-m+1}}} & \frac{\partial{\varphi_1(\boldsymbol{x_0})}}{\partial{x_{n-m+2}}} & \cdots & \frac{\partial{\varphi_1(\boldsymbol{x_0})}}{\partial{x_n}}\\ \frac{\partial{\varphi_2(\boldsymbol{x_0})}}{\partial{x_{n-m+1}}} & \frac{\partial{\varphi_2(\boldsymbol{x_0})}}{\partial{x_{n-m+2}}} & \cdots & \frac{\partial{\varphi_2(\boldsymbol{x_0})}}{\partial{x_n}}\\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial{\varphi_m(\boldsymbol{x_0})}}{\partial{x_{n-m+1}}} & \frac{\partial{\varphi_m(\boldsymbol{x_0})}}{\partial{x_{n-m+2}}} & \cdots & \frac{\partial{\varphi_m(\boldsymbol{x_0})}}{\partial{x_n}}\end{array}\right)^{-1} |
- | \left(\begin{array} {}\frac{\partial{\varphi_1(\vec{x_0})}}{\partial{x_1}} & \frac{\partial{\varphi_1(\vec{x_0})}}{\partial{x_2}} & \cdots & \frac{\partial{\varphi_1(\vec{x_0})}}{\partial{x_{n-m}}}\\ \frac{\partial{\varphi_2(\vec{x_0})}}{\partial{x_1}} & \frac{\partial{\varphi_2(\vec{x_0})}}{\partial{x_2}} & \cdots & \frac{\partial{\varphi_2(\vec{x_0})}}{\partial{x_{n-m}}}\\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial{\varphi_m(\vec{x_0})}}{\partial{x_1}} & \frac{\partial{\varphi_m(\vec{x_0})}}{\partial{x_2}} & \cdots & \frac{\partial{\varphi_m(\vec{x_0})}}{\partial{x_{n-m}}}\end{array}\right)\triangleq -A^{-1}B\quad \left(2\right)$$ | + | \left(\begin{array} {}\frac{\partial{\varphi_1(\boldsymbol{x_0})}}{\partial{x_1}} & \frac{\partial{\varphi_1(\boldsymbol{x_0})}}{\partial{x_2}} & \cdots & \frac{\partial{\varphi_1(\boldsymbol{x_0})}}{\partial{x_{n-m}}}\\ \frac{\partial{\varphi_2(\boldsymbol{x_0})}}{\partial{x_1}} & \frac{\partial{\varphi_2(\boldsymbol{x_0})}}{\partial{x_2}} & \cdots & \frac{\partial{\varphi_2(\boldsymbol{x_0})}}{\partial{x_{n-m}}}\\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial{\varphi_m(\boldsymbol{x_0})}}{\partial{x_1}} & \frac{\partial{\varphi_m(\boldsymbol{x_0})}}{\partial{x_2}} & \cdots & \frac{\partial{\varphi_m(\boldsymbol{x_0})}}{\partial{x_{n-m}}}\end{array}\right)\triangleq -A^{-1}B\quad \tag{2}$$ |
- | 注意到$$-\left(\frac{\partial{f(\vec{x_0})}}{\partial{x_{n-m+1}}},…,\frac{\partial{f(\vec{x_0})}}{\partial{x_n}}\right)\cdot A^{-1}$$ | + | 注意到$$-\left(\frac{\partial{f(\boldsymbol{x_0})}}{\partial{x_{n-m+1}}},\cdots,\frac{\partial{f(\boldsymbol{x_0})}}{\partial{x_n}}\right)\cdot A^{-1}$$ |
- | 是一个 $m$ 维行向量,我们可以将其记为$$-\left(\frac{\partial{f(\vec{x_0})}}{\partial{x_{n-m+1}}},…,\frac{\partial{f(\vec{x_0})}}{\partial{x_n}}\right)\cdot A^{-1}=\left(\lambda_1,\lambda_2,\cdots,\lambda_m\right)\quad \left(3\right)$$ | + | 是一个 $m$ 维行向量,我们可以将其记为$$-\left(\frac{\partial{f(\boldsymbol{x_0})}}{\partial{x_{n-m+1}}},\cdots,\frac{\partial{f(\boldsymbol{x_0})}}{\partial{x_n}}\right)\cdot A^{-1}=\left(\lambda_1,\lambda_2,\cdots,\lambda_m\right)\quad \tag{3}$$ |
将 $\left(2\right),\left(3\right)$代入之前的式子 $\left(1\right)$ 得 | 将 $\left(2\right),\left(3\right)$代入之前的式子 $\left(1\right)$ 得 | ||
- | $$\left(\frac{\partial{f(\vec{x_0})}}{\partial{x_1}},…,\frac{\partial{f(\vec{x_0})}}{\partial{x_{n-m}}}\right)+\left(\lambda_1,\lambda_2,\cdots,\lambda_m\right)\left(\begin{array} {}\frac{\partial{\varphi_1(\vec{x_0})}}{\partial{x_1}} & \frac{\partial{\varphi_1(\vec{x_0})}}{\partial{x_2}} & \cdots & \frac{\partial{\varphi_1(\vec{x_0})}}{\partial{x_{n-m}}}\\ \frac{\partial{\varphi_2(\vec{x_0})}}{\partial{x_1}} & \frac{\partial{\varphi_2(\vec{x_0})}}{\partial{x_2}} & \cdots & \frac{\partial{\varphi_2(\vec{x_0})}}{\partial{x_{n-m}}}\\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial{\varphi_m(\vec{x_0})}}{\partial{x_1}} & \frac{\partial{\varphi_m(\vec{x_0})}}{\partial{x_2}} & \cdots & \frac{\partial{\varphi_m(\vec{x_0})}}{\partial{x_{n-m}}}\end{array}\right)=0\quad \left(4\right)$$ | + | $$\left(\frac{\partial{f(\boldsymbol{x_0})}}{\partial{x_1}},\cdots,\frac{\partial{f(\boldsymbol{x_0})}}{\partial{x_{n-m}}}\right)+\left(\lambda_1,\lambda_2,\cdots,\lambda_m\right)\left(\begin{array} {}\frac{\partial{\varphi_1(\boldsymbol{x_0})}}{\partial{x_1}} & \frac{\partial{\varphi_1(\boldsymbol{x_0})}}{\partial{x_2}} & \cdots & \frac{\partial{\varphi_1(\boldsymbol{x_0})}}{\partial{x_{n-m}}}\\ \frac{\partial{\varphi_2(\boldsymbol{x_0})}}{\partial{x_1}} & \frac{\partial{\varphi_2(\boldsymbol{x_0})}}{\partial{x_2}} & \cdots & \frac{\partial{\varphi_2(\boldsymbol{x_0})}}{\partial{x_{n-m}}}\\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial{\varphi_m(\boldsymbol{x_0})}}{\partial{x_1}} & \frac{\partial{\varphi_m(\boldsymbol{x_0})}}{\partial{x_2}} & \cdots & \frac{\partial{\varphi_m(\boldsymbol{x_0})}}{\partial{x_{n-m}}}\end{array}\right)=0\quad \tag{4}$$ |
另外我们可以将 $\left(3\right)$ 改写成 | 另外我们可以将 $\left(3\right)$ 改写成 | ||
- | $$ \left(\frac{\partial{f(\vec{x_0})}}{\partial{x_{n-m+1}}},…,\frac{\partial{f(\vec{x_0})}}{\partial{x_n}}\right)+\left(\lambda_1,\lambda_2,\cdots,\lambda_m\right)\left(\begin{array} {}\frac{\partial{\varphi_1(\vec{x_0})}}{\partial{x_{n-m+1}}} & \frac{\partial{\varphi_1(\vec{x_0})}}{\partial{x_{n-m+2}}} & \cdots & \frac{\partial{\varphi_1(\vec{x_0})}}{\partial{x_n}}\\ \frac{\partial{\varphi_2(\vec{x_0})}}{\partial{x_{n-m+1}}} & \frac{\partial{\varphi_2(\vec{x_0})}}{\partial{x_{n-m+2}}} & \cdots & \frac{\partial{\varphi_2(\vec{x_0})}}{\partial{x_n}}\\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial{\varphi_m(\vec{x_0})}}{\partial{x_{n-m+1}}} & \frac{\partial{\varphi_m(\vec{x_0})}}{\partial{x_{n-m+2}}} & \cdots & \frac{\partial{\varphi_m(\vec{x_0})}}{\partial{x_n}}\end{array}\right)=0\quad \left(5\right)$$ | + | $$ \left(\frac{\partial{f(\boldsymbol{x_0})}}{\partial{x_{n-m+1}}},\cdots,\frac{\partial{f(\boldsymbol{x_0})}}{\partial{x_n}}\right)+\left(\lambda_1,\lambda_2,\cdots,\lambda_m\right)\left(\begin{array} {}\frac{\partial{\varphi_1(\boldsymbol{x_0})}}{\partial{x_{n-m+1}}} & \frac{\partial{\varphi_1(\boldsymbol{x_0})}}{\partial{x_{n-m+2}}} & \cdots & \frac{\partial{\varphi_1(\boldsymbol{x_0})}}{\partial{x_n}}\\ \frac{\partial{\varphi_2(\boldsymbol{x_0})}}{\partial{x_{n-m+1}}} & \frac{\partial{\varphi_2(\boldsymbol{x_0})}}{\partial{x_{n-m+2}}} & \cdots & \frac{\partial{\varphi_2(\boldsymbol{x_0})}}{\partial{x_n}}\\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial{\varphi_m(\boldsymbol{x_0})}}{\partial{x_{n-m+1}}} & \frac{\partial{\varphi_m(\boldsymbol{x_0})}}{\partial{x_{n-m+2}}} & \cdots & \frac{\partial{\varphi_m(\boldsymbol{x_0})}}{\partial{x_n}}\end{array}\right)=0\quad \tag{5}$$ |
将 $\left(4\right),\left(5\right)$ 写成分量形式再加上约束条件即可证明。 | 将 $\left(4\right),\left(5\right)$ 写成分量形式再加上约束条件即可证明。 | ||
=====拉格朗日乘子法===== | =====拉格朗日乘子法===== | ||
- | 构造函数 $F(x_1,\cdots,x_n,\lambda_1,\cdots,\lambda_m)=f(\vec{x})+\sum_{j=1}^m \lambda_j\varphi_j(\vec{x})$ ,则上述求条件极值点的必要条件形式转化为 $F$ 的通常极值的必要条件 $$\begin{cases}\frac{\partial{F(\vec{x_0})}}{\partial{x_i}}=0\quad(i=1,2,\cdots,n)\\ \frac{\partial{F(\vec{x_0})}}{\partial{\lambda_j}}=0\quad(j=1,2,\cdots,m)\end{cases}$$ | + | 构造函数 $F(x_1,\cdots,x_n,\lambda_1,\cdots,\lambda_m)=f(\boldsymbol{x})+\sum_{j=1}^m \lambda_j\varphi_j(\boldsymbol{x})$ ,则上述求条件极值点的必要条件形式转化为 $F$ 的通常极值的必要条件 $$\begin{cases}\frac{\partial{F(\boldsymbol{x_0})}}{\partial{x_i}}=0\quad(i=1,2,\cdots,n)\\ \frac{\partial{F(\boldsymbol{x_0})}}{\partial{\lambda_j}}=0\quad(j=1,2,\cdots,m)\end{cases}$$ |
此即拉格朗日乘子法 | 此即拉格朗日乘子法 | ||
+ | =====例题===== | ||
+ | ====CF813C==== | ||
+ | * 题意:给定整数 $a,b,c,s$ ,求使得 $x^ay^bz^c$ 最大的实数 $x,y,z$ ,其中 $x+y+z\le s(1\le s \le 10^3,0\le a,b,c \le 10^3)$ | ||
+ | * 题解:对于 $x,y,z > 0$ 时显然取 $x+y+z=s$ 时会比 $x+y+z<s$ 时更优;对于 $xyz=0$ 时取 $x+y+z=s$ 不会比 $x+y+z<s$ 劣。因此可以将限制条件改为 $x+y+z=s$ 即可。令 $G(x,y,z)=x+y+z-s,F(x,y,z)=a\ln x+b\ln y+c\ln z,H(x,y,z)=F(x,y,z)+\lambda G(x,y,z)$ 套用拉格朗日乘子法即可得到 $$x=\frac{as}{a+b+c},y=\frac{bs}{a+b+c},z=\frac{cs}{a+b+c}$$ 注意 $a+b+c=0$ 时需要特判。 | ||
+ | * 对于所求表达式为乘积的形式时,可以取对数,如上题中 $F(x,y,z)=a\ln x+b\ln y+c\ln z$ ,此时求出的极值点依旧为原表达式的极值点,具体问题需要具体分析。 | ||
+ | * 一般来说使用拉格朗日乘子法时需要注意边界条件,此题 $x,y,z$ 为边界条件时表达式值一定不会优于最大值,所以可以不考虑边界。注意边界值并不是 $0$。 | ||
+ | ====一道没有来源的题目==== | ||
+ | * 题意:平面上有$n(n{\le}8)$个点,告诉你每个点距离原点的距离,求这$n$个点所围成的凸包的最大面积 | ||
+ | * 题解:枚举哪些点在凸包上,并且这些点极角排序后的顺序。假设极径依次为$r_1,r_2,⋯,r_n$。\\ 面积$S={\frac{1}{2}}(r_1r_2sinθ_1+r_2r_3sinθ_2+⋯+r_nr_1sinθ_n)$并且${\sum_{i=1}^n}{\theta}_i=2\pi$。\\ 令$F(θ_1,θ_2,⋯,θ_n)=S+{\lambda}g(θ_1,θ_2,⋯,θ_n)$,其中$g(θ_1,θ_2,⋯,θ_n)={\sum_{i=1}^n}{\theta}_i-2\pi$.\\ 由拉格朗日乘子法,解得$−λ=r_1r_2cosθ_1=r_2r_3cosθ_2=⋯=r_nr_1cosθ_n$,可二分$λ$,求出满足$g=0$的解,此时对应的$\theta$就是当前条件下面积的最大值。 | ||
+ | * 注:其实枚举点在凸包上时这些点并非一定会构成凸包,但是这样的面积一定不会是最大的,对于答案并没有影响。 | ||
+ | * 这道题是同学出的,并没有具体数据。 | ||
+ | ====NOI2012骑行川藏==== | ||
+ | * 题意:$n$ 段路,每段路有三个参数 $s_i,k_i,v_i'$,其中 $s_i $ ,表示这段路的长度,$k_i$ ,表示这段路的风阻系数,$v_i'$ 表示这段路上的风速。若在一段路上的速度为 $v_i$ ,消耗的能量为 $E_i=k_i(v_i-v_i')^2s_i$。初始有体能值 $E_U$ 问在有限的体力内到达目的地的最短时间是多少。 | ||
+ | * 题解:显然体能值要尽量用光会更优。若 $v_i<v_i'$ 则取 $V=2v_i'-v_i$ ,两个速度消耗的能量是相同的,而且 $V$ 优于 $v_i$ ,因此我们可以默认一段路的 $v_i\ge v_i'$。题目即求在 $\sum_{i=1}^{n}E_i=E_U$ 的条件下 $T=\sum_{i=1}^{n}\frac{s_i}{v_i}$ 的最小值。套用拉格朗日乘子法可知 $$\lambda=\frac{1}{2k_i v_i (v_i-v_i')^2}$$ 根据假设 $v_i\ge v_i'$ 可知 $\frac{1}{2k_i v_i (v_i-v_i')^2}$ 单调,因此可以通过二分 $\lambda$ 来求解答案。 |