这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
2020-2021:teams:farmer_john:week_15 [2020/08/14 11:07] 2sozx [2sozx] |
2020-2021:teams:farmer_john:week_15 [2020/10/26 06:58] (当前版本) 203.208.60.12 ↷ 链接因页面移动而自动修正 |
||
---|---|---|---|
行 3: | 行 3: | ||
|2020-08-08| [[2020牛客暑期多校第九场]] | 6 | 10 | 12 |52/975| | |2020-08-08| [[2020牛客暑期多校第九场]] | 6 | 10 | 12 |52/975| | ||
|2020-08-10| [[2020牛客暑期多校第十场]] | 5 | 6 | 10 |23/906| | |2020-08-10| [[2020牛客暑期多校第十场]] | 5 | 6 | 10 |23/906| | ||
- | |2020-08-13| [[2020 Multi-University Training Contest 6|HDU 2020 Multi-University Training Contest 6]] | 7 | 8 | 11 |73/792| | + | |2020-08-13| [[2020hdu暑期多校第六场|HDU 2020 Multi-University Training Contest 6]] | 7 | 8 | 11 |73/792| |
===== 本周推荐 ===== | ===== 本周推荐 ===== | ||
====2sozx==== | ====2sozx==== | ||
行 17: | 行 17: | ||
* comment:炉石传说真尼玛好玩 | * comment:炉石传说真尼玛好玩 | ||
====Bazoka13==== | ====Bazoka13==== | ||
- | ===题目名称=== | + | ===2020HDU多校第六场D Asteroid in Love === |
- | * 分类: | + | * 分类:计算几何 |
- | * 题意: | + | * 题意:给定平面里的$n$个点,每个点有一个种类,共计三个种类,每个种类选出一个点,选出三个点,使得三个点组成的三角形面积最大 |
- | * 题解: | + | * 题解: |
+ | - 数字列表项目显然可以通过枚举某两个种类的点,然后去找距离当前构成的线段距离最远的点,而距离最远的点一定是在第三类点所构成的凸包上,那么只需要求出第三种点的上下凸包,然后跑一个三分即可。 | ||
+ | - 由于不知道是凸凹函数,需要都跑一遍,但是有可能会出现双峰的情况,换一个方向再跑一遍即可。 | ||
- | * comment: | + | * comment:日常撞大运出正解(不过$std$貌似只跑了一遍?) |
====JJLeo=== | ====JJLeo=== | ||
- | ===题目名称=== | + | ===2020HDU多校第六场G A Very Easy Math Problem=== |
- | * 分类: | + | * 分类:数论,莫比乌斯反演。 |
- | * 题意: | + | * 题意:给定$k$与$x$,$t$次询问,每次询问给定一个$n$,求$$\sum_{a_1=1}^{n}\sum_{a_2=1}^n\dotsb\sum_{a_x=1}^n\left(\prod_{j=1}^xa_j^k\right)f\left(\gcd\left(a_1,a_2,\dots,a_x\right)\right)\cdot \gcd\left(a_1,a_2,\dots,a_x\right) \pmod{{10}^9+7}$$其中$f(n)$定义如下:如果存在正整数$k$使得$k^2|n$,那么$f(n)=0$,否则$f(n)=1$。$$(1\le t \le 10^4,1\le k\le 10^9,1\le x\le 10^9,1\leq n\leq 2\times10^5)$$ |
- | * 题解: | + | * 题解:首先,容易证明以下两个等式成立,以便反演中使用$$f(n)=|\mu(n)|=\mu^2(n)$$$$\sum_{a_1=1}^{n}\sum_{a_2=1}^n\dotsb\sum_{a_x=1}^n\left(\prod_{j=1}^xa_j^k\right)=\left(\sum_{i=1}^ni^k\right)^x$$接下来我们开始反演$$\sum_{a_1=1}^{n}\sum_{a_2=1}^{n}\ldots \sum_{a_x=1}^{n}\left (\prod_{j=1}^{x}a_j^k\right )f(\gcd(a_1,a_2,\ldots ,a_x))\cdot \gcd(a_1,a_2,\ldots ,a_x)$$枚举$d=\gcd(a_1,a_2,\ldots ,a_x)$$$=\sum_{d=1}^n\mu^2\left(d\right)d\sum_{a_1=1}^{\left\lfloor \frac{n}{d} \right\rfloor}\sum_{a_2=1}^{\left\lfloor \frac{n}{d} \right\rfloor}\dotsb\sum_{a_x=1}^{\left\lfloor \frac{n}{d} \right\rfloor}\left(\prod_{j=1}^x(a_jd)^k\right)[\gcd\left(a_1,a_2,\dots,a_x\right)=1]$$$$=\sum_{d=1}^n\mu^2\left(d\right)d^{kx+1}\sum_{a_1=1}^{\left\lfloor \frac{n}{d} \right\rfloor}\sum_{a_2=1}^{\left\lfloor \frac{n}{d} \right\rfloor}\dotsb\sum_{a_x=1}^{\left\lfloor \frac{n}{d} \right\rfloor}\left(\prod_{j=1}^xa_j^k\right)[\gcd\left(a_1,a_2,\dots,a_x\right)=1]$$利用$\epsilon = \mu * 1$$$=\sum_{d=1}^n\mu^2\left(d\right)d^{kx+1}\sum_{a_1=1}^{\left\lfloor \frac{n}{d} \right\rfloor}\sum_{a_2=1}^{\left\lfloor \frac{n}{d} \right\rfloor}\dotsb\sum_{a_x=1}^{\left\lfloor \frac{n}{d} \right\rfloor}\left(\prod_{j=1}^xa_j^k\right)\sum_{p|\gcd(a_1,a_2,\dots,a_x)}\mu(p)$$枚举$p$$$=\sum_{d=1}^n\mu^2\left(d\right)d^{kx+1}\sum_{p=1}^{\left\lfloor \frac{n}{d} \right\rfloor}\mu(p)\sum_{a_1=1}^{\left\lfloor \frac{n}{dp} \right\rfloor}\sum_{a_2=1}^{\left\lfloor \frac{n}{dp} \right\rfloor}\dotsb\sum_{a_x=1}^{\left\lfloor \frac{n}{dp} \right\rfloor}\left(\prod_{j=1}^x(a_jp)^k\right)$$$$=\sum_{d=1}^n\mu^2\left(d\right)d^{kx+1}\sum_{p=1}^{\left\lfloor \frac{n}{d} \right\rfloor}\mu(p)p^{kx}\sum_{a_1=1}^{\left\lfloor \frac{n}{dp} \right\rfloor}\sum_{a_2=1}^{\left\lfloor \frac{n}{dp} \right\rfloor}\dotsb\sum_{a_x=1}^{\left\lfloor \frac{n}{dp} \right\rfloor}\left(\prod_{j=1}^xa_j^k\right)$$$$=\sum_{d=1}^n\mu^2\left(d\right)d^{kx+1}\sum_{p=1}^{\left\lfloor \frac{n}{d} \right\rfloor}\mu(p)p^{kx}\left(\sum_{i=1}^{\left\lfloor \frac{n}{dp} \right\rfloor}i^k\right)^x$$$$=\sum_{d=1}^n\mu^2\left(d\right)d\sum_{p=1}^{\left\lfloor \frac{n}{d} \right\rfloor}\mu(p){(dp)}^{kx}\left(\sum_{i=1}^{\left\lfloor \frac{n}{dp} \right\rfloor}i^k\right)^x$$令$T=dp$,枚举$T$$$=\sum_{T=1}^n{T}^{kx}\left(\sum_{i=1}^{\left\lfloor \frac{n}{T} \right\rfloor}i^k\right)^x\sum_{d|T}\mu^2\left(d\right)\mu(\frac{T}{d})d$$$$=\sum_{T=1}^n\left(\sum_{i=1}^{\left\lfloor \frac{n}{T} \right\rfloor}i^k\right)^x{T}^{kx}\sum_{d|T}\mu^2\left(d\right)\mu(\frac{T}{d})d$$设$$F(n)=\left(\sum_{i=1}^{n}i^k\right)^x$$$$G(n)={n}^{kx}\sum_{d|n}\mu^2\left(d\right)\mu(\frac{n}{d})d$$则所求式子化为$$\sum_{T=1}^{n}F(\left\lfloor \frac{n}{T} \right\rfloor)G(T)$$$O(n \log n)$分别处理出$F(n)$和$G(n)$,对于每组询问$O(\sqrt{n})$整除分块即可,总复杂度$O(n \log n + t \sqrt{n})$。 |
- | * comment: | + | |
+ | * comment:非常适合数论萌新入门的反演题。 | ||
=====个人训练===== | =====个人训练===== | ||
===== 2sozx ===== | ===== 2sozx ===== | ||
==== 比赛 ==== | ==== 比赛 ==== | ||
+ | * 2020.08.12 [[.2sozx:Codeforces Round 664 (Div. 2)|Codeforces Round #664(Div. 2)]] | ||
==== 题目 ==== | ==== 题目 ==== | ||
===== Bazoka13 ===== | ===== Bazoka13 ===== | ||
行 47: | 行 51: | ||
==== 题目 ==== | ==== 题目 ==== | ||
+ | * [[莫比乌斯反演技巧总结]] |