这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录 前一修订版 | |||
2020-2021:teams:hotpot:200711-200717 [2020/07/17 17:09] misakatao 更新 |
2020-2021:teams:hotpot:200711-200717 [2020/07/17 17:16] (当前版本) misakatao 更新 |
||
---|---|---|---|
行 100: | 行 100: | ||
推荐理由:这种表面上范围很大的题目,很多时候可以考虑第一步的特殊情况进行处理,达到从第二步开始范围就缩小的效果。这种思想极其重要,运用也较为广泛(像是区间取根号)。 | 推荐理由:这种表面上范围很大的题目,很多时候可以考虑第一步的特殊情况进行处理,达到从第二步开始范围就缩小的效果。这种思想极其重要,运用也较为广泛(像是区间取根号)。 | ||
- | 陶吟翔: | + | 陶吟翔:[[https://ac.nowcoder.com/acm/contest/5667/I|传送门]] |
+ | |||
+ | 题目大意:有一个区间$[1,n]$,现在可以进行操作把区间$[l,r]$变成$[l-1,r],[l,r-1],[l+1,r]$或$[l,r+1]$,但是一旦区间变成$[l,l]$就不能再变,现在有$m$个选择,你可以花费$c$把某一个区间$[l,r]$向$[l-1,r]$或$[l,r-1]$的操作禁止,问能不能完全避免把区间变成$[l,l]$,如果能,最小花费 | ||
+ | |||
+ | 数据范围:$2 \le n \le 500$,$0 \le m \le n(n-1)$,$1 \le c \le 10^6$ | ||
+ | |||
+ | 解题思路:可以把整个过程看作在一个$n \times n$的网格上从$(1,n)$走向对角线,我们可以断开其中某些地方使得不能从起点走到对角线上,这显然是一个最小割模型,考虑到这道题数据规模较大而图又比较规则,所以我们可以采取建对偶图的方式求解 | ||
+ | |||
+ | 推荐理由:这道题看似是一道区间题,但是可以通过转化将其与最小割模型建立联系,考察了做题者对模型进行转化和理解的能力,并且本题建立对偶图虽然有多种方式,但是都必须要保证从起点到终点所经过的一条路径能够组成一组割,考察了做题者对对偶图的理解。 | ||
郭衍培: | 郭衍培: |