这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
2020-2021:teams:hotpot:2020nowcoder5 [2020/07/31 11:51] misakatao 更新 |
2020-2021:teams:hotpot:2020nowcoder5 [2020/07/31 16:29] (当前版本) 喝西北风 |
||
---|---|---|---|
行 19: | 行 19: | ||
===题解=== | ===题解=== | ||
- | ====B - ==== | + | ====B - Graph==== |
- | ===solved by === | + | ===solved by gyp,tyx=== |
===题意=== | ===题意=== | ||
+ | |||
+ | 给定一棵树。每次可以添加一条边或删去一条边。保证任何时候一定是连通图,每个环上的边异或和为0。求所有边的和最小是多少 | ||
===数据范围=== | ===数据范围=== | ||
+ | |||
+ | $2\le n \le 10^5$,$0 \le w < 2^30$ | ||
===题解=== | ===题解=== | ||
- | ====C - ==== | + | 可以证明,每条边的长度是确定的。任取一点为根,可以计算出每一点到根的所有边的异或和,记为$a_i$。本题等价于求一个最小生成树,第i和第j个点的边权为$a_i \bigoplus a_j$。先按升序排序。从最高位开始,从所有最高位是1和最高位是0的里各选一个数,使得其异或结果最小,这条边被计入。然后再分别从两个部分再进行类似的操作。 |
- | ===solved by === | + | ====C - Easy==== |
+ | |||
+ | ===upsolved by gyp=== | ||
===题意=== | ===题意=== | ||
+ | |||
+ | 给定n,m,k。对长度为k的正整数序列$\sum_{i=1}^k a_i=n$,$\sum_{i=1}^k b_i=m$,$P=\prod_{i=1}^kmin(a_i,b_i)$。求所有满足要求的a,b对应的P的和 | ||
===数据范围=== | ===数据范围=== | ||
+ | |||
+ | $T\le 100$,$1\le n,m\le 10^6,1\le k\le min(n,m)$ | ||
===题解=== | ===题解=== | ||
+ | |||
+ | 对于给定的a,b,P为满足$c_i\le min(a_i,b_i)$,长度为k的正整数序列c的个数。对于任意c,设$S=\sum_{i=1}^kc_i$,一共有$C_{n-S+k-1}^{k-1}\cdot C_{m-S+k-1}^{k-1}$个a,b包含c。枚举S即可。 | ||
====D - ==== | ====D - ==== | ||
行 101: | 行 113: | ||
===题解=== | ===题解=== | ||
- | ====I - ==== | + | ====I - Hard Math Problem==== |
- | ===solved by === | + | ===solved by gyp=== |
===题意=== | ===题意=== | ||
+ | |||
+ | 很奇怪的一道数学题,没有输入,只输出一个结果 | ||
===数据范围=== | ===数据范围=== | ||
+ | |||
+ | 无 | ||
===题解=== | ===题解=== | ||
+ | |||
+ | 反正答案是2/3。试也能试出来,并不会证。 | ||
====J - ==== | ====J - ==== |