两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
2020-2021:teams:hotpot:2020nowcoder8 [2020/08/07 11:28] misakatao 更新 |
2020-2021:teams:hotpot:2020nowcoder8 [2020/08/07 16:37] (当前版本) 喝西北风 |
||
---|---|---|---|
行 1: | 行 1: | ||
=====比赛信息===== | =====比赛信息===== | ||
- | * **日期:2020.8.1** | + | * **日期:2020.8.3** |
* **比赛地址:** [[https://ac.nowcoder.com/acm/contest/5673#rank|传送门]] | * **比赛地址:** [[https://ac.nowcoder.com/acm/contest/5673#rank|传送门]] | ||
行 9: | 行 9: | ||
=====题解===== | =====题解===== | ||
- | ====A - ==== | + | ====A - All-Star Game==== |
- | ===solved by === | + | ===solved by tyx,lxh=== |
===题意=== | ===题意=== | ||
+ | |||
+ | 有$n$个球员和$m$个粉丝,每个粉丝有可能是多个球员的粉丝,如果一个粉丝是某个球员$i$的粉丝或者他粉的球员的粉丝中有球员$i$的粉丝,那么他就回去看球员$i$的比赛,现在要选择若干个球员使得所有粉丝都来看比赛,问最少选几个,并且有$q$次询问,每次更改一个粉丝和球员的关系 | ||
===数据范围=== | ===数据范围=== | ||
+ | |||
+ | $1 \le n,m,q \le 2 \times 10^5$,粉丝和球员的粉丝关系$\le 5 \times 10^5$ | ||
===题解=== | ===题解=== | ||
+ | |||
+ | 单独一个状态的问题可以通过并查集解决,然后题目还有$q$次询问,是比较经典的动态图连通块个数判断,只需要把所有的边按照出现时间挂在时间线段树上,然后从根往叶子走,经过的边加入即可,为了可以回溯,需要用可以撤销的并查集,并查集部分需要像一般的按秩合并并查集一样维护点个数,还需要维护粉丝的个数来方便答案的统计。 | ||
====B - ==== | ====B - ==== | ||
行 49: | 行 55: | ||
===题解=== | ===题解=== | ||
- | ====E - ==== | + | ====E - Enigmatic Partition==== |
- | ===solved by === | + | ===solved by gyp=== |
===题意=== | ===题意=== | ||
+ | |||
+ | 定义n的一种划分为一个不减数列,相邻两项最多差1,首项和末项差2。f(n)为n的划分种数。求T组数据,f(n)。 | ||
===数据范围=== | ===数据范围=== | ||
+ | |||
+ | $1\le T\le 10^4,1\le n\le 10^5$ | ||
===题解=== | ===题解=== | ||
+ | |||
+ | 设数列为m项。枚举$a_1,m$。对于这样的$a_1,m$的数列,计算其对f(a_1m+k)的贡献。发现,对$3\le k\le m$,其贡献为$\lfloor \frac {k-1}2 \rfloor$,对$m\le k\le 2m-3$,其贡献为$\lfloor \frac {2m-k-1}2 \rfloor$。设g(x)=f(x)-f(x-2)。先求g(x),再得到f(x) | ||
====F - ==== | ====F - ==== | ||
行 69: | 行 81: | ||
===题解=== | ===题解=== | ||
- | ====G - ==== | + | ====G - Game SET==== |
- | ===solved by === | + | ===solved by tyx=== |
===题意=== | ===题意=== | ||
+ | |||
+ | 给出$N$张互不相同的牌,每张牌有四种属性,每一种属性有三个类别或者是$*$代表万能属性。现在三张牌能够组成一个set当且仅当对于每一个属性,这三张牌的类别各不相同或完全一样,问能否找出这样一个set | ||
===数据范围=== | ===数据范围=== | ||
+ | |||
+ | 多组数据,$1 \le T \le 1000$,$N \le 256$ | ||
===题解=== | ===题解=== | ||
- | ====H - Harmony Pairs==== | + | 直接记录下来哪些卡有,然后枚举两张卡看看第三张满足的是否有即可,虽然理论复杂度是$O(N^3)$的,但是远远达不到。标程做法更为巧妙,无法构成set的集合最大也就只有20个,所以我们往后枚举21张总能找到一个set或本身就是无解 |
+ | |||
+ | ====H - ==== | ||
===solved by === | ===solved by === |