这里会显示出您选择的修订版和当前版本之间的差别。
| 后一修订版 | 前一修订版 | ||
|
2020-2021:teams:intrepidsword:2020.05.15-2020.05.21_周报 [2020/05/22 21:58] chielo 创建 |
2020-2021:teams:intrepidsword:2020.05.15-2020.05.21_周报 [2020/05/24 15:08] (当前版本) prime21 [pmxm] |
||
|---|---|---|---|
| 行 6: | 行 6: | ||
| ==== zzh ==== | ==== zzh ==== | ||
| + | |||
| + | [[https://codeforces.com/contest/1355/|Codeforces Round #643 (Div. 2)]]: ''pro: 5/5/6'' ''rk: 711/8876'' | ||
| ==== pmxm ==== | ==== pmxm ==== | ||
| + | 没摸 | ||
| + | |||
| + | |||
| + | topcoder srm 722 (vp: solved solved opened) | ||
| ==== jsh ==== | ==== jsh ==== | ||
| 行 19: | 行 25: | ||
| ==== zzh ==== | ==== zzh ==== | ||
| + | |||
| + | 科普一下解同余方程的基本思想吧。设 $f(\vec{x})\equiv a\pmod{m}$,而 $m=p_{1}^{e_{1}}\cdots p_{s}^{e_{s}}$,那么可以分别求解每个 $f(\vec{x})\equiv a\pmod{p_{i}^{e_{i}}}$,然后将所有解用中国剩余定理合并。值得注意的是,由于 $p_{i}^{e_{i}}$ 两两互质,因此原方程的解集与分解后各方程的解集的笛卡尔积一一对应。 | ||
| ==== pmxm ==== | ==== pmxm ==== | ||
| + | 推荐 | ||
| + | |||
| + | 1. 基本状压dp: TopCoder SRM 722 div1 600 | ||
| + | 2. dp多写几道题 | ||
| ==== jsh ==== | ==== jsh ==== | ||