用户工具

站点工具


2020-2021:teams:legal_string:数论概论学习小结_lgwza

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录 前一修订版
后一修订版
前一修订版
2020-2021:teams:legal_string:数论概论学习小结_lgwza [2020/07/03 22:23]
lgwza [第 20 章 欧拉\phi 函数与因数和]
2020-2021:teams:legal_string:数论概论学习小结_lgwza [2020/07/03 22:25] (当前版本)
lgwza [第 25 章 二次互反律]
行 376: 行 376:
 === 定理 25.1 (二次互反律) === === 定理 25.1 (二次互反律) ===
  
-设 $p$, $q$ 是不同的奇素数,​ 则 $$ ()={+设 $p$, $q$ 是不同的奇素数,​ 则 
 +$$ 
 +\left(\frac{-1}{p}\right)=\left\{ 
 +\begin{array}{rl} 
 +1 & if & p \equiv 1\pmod{4},​\\ 
 +-1 & if & p \equiv 3\pmod{4}. 
 +\end{array} \right.\\
  
-.\+\left(\frac{2}{p}\right)=\left\{ 
 +\begin{array}{rl} 
 +1 & if & p\equiv 1 \ or\ 7\pmod{8}, \\ 
 +-1 & if & p\equiv 3\ or\ 5\pmod{8}. 
 +\end{array}\right.\\
  
-()={ +\left(\frac{q}{p}\right)=\left\
- +\begin{array}{rl} 
-.+\left(\frac{p}{q}\right) & if &​p\equiv 1\pmod{4}&​or&​q\equiv1\pmod{4},​\
- +-\left(\frac{p}{q}\right)&​if&​p\equiv3\pmod{4}&​and&​q\equiv3\pmod{4}. 
-()=+\end{array}\right. 
- +$$
-. $$+
  
 === 定理 25.2 (广义二次互反律) === === 定理 25.2 (广义二次互反律) ===
  
-设 $a$, $b$ 为正奇数,​ 则 $$ ()={ +设 $a$, $b$ 为正奇数,​ 则 
- +$$ 
-.+\left(\frac{-1}{b}\right)=\left\
- +\begin{array}{rl} 
-()=+1 & if & b \equiv 1\pmod{4},\
- +-1 & if & b \equiv 3\pmod{4}. 
-.\+\end{array} \right.\\
  
-()={+\left(\frac{2}{b}\right)=\left\{ 
 +\begin{array}{rl} 
 +1 & if & b\equiv 1 \ or\ 7\pmod{8}, \\ 
 +-1 & if & b\equiv 3\ or\ 5\pmod{8}. 
 +\end{array}\right.\\
  
-. $$+\left(\frac{a}{b}\right)=\left\{ 
 +\begin{array}{rl} 
 +\left(\frac{b}{a}\right) & if &​a\equiv 1\pmod{4}\ or\ b\equiv1\pmod{4},​\\ 
 +-\left(\frac{b}{a}\right)&​if&​a\equiv b\equiv 3\pmod{4}. 
 +\end{array}\right. 
 +$$
2020-2021/teams/legal_string/数论概论学习小结_lgwza.1593786197.txt.gz · 最后更改: 2020/07/03 22:23 由 lgwza