这里会显示出您选择的修订版和当前版本之间的差别。
后一修订版 | 前一修订版 | ||
2020-2021:teams:legal_string:王智彪:反演 [2021/08/04 16:49] 王智彪 创建 |
2020-2021:teams:legal_string:王智彪:反演 [2021/08/06 18:33] (当前版本) 王智彪 |
||
---|---|---|---|
行 8: | 行 8: | ||
圆 $A$ 半径为 $r_{1}$ ,其反演图形的半径为 ${\frac 1 2}({\frac 1 {|OA|-r_{1}}}-{\frac 1 {|OA|+r_{1}}})R^{2}$ 。 | 圆 $A$ 半径为 $r_{1}$ ,其反演图形的半径为 ${\frac 1 2}({\frac 1 {|OA|-r_{1}}}-{\frac 1 {|OA|+r_{1}}})R^{2}$ 。 | ||
+ | |||
+ | 设 $O$ 点坐标为 $(x_{0},y_{0})$ ,圆的圆心是 $A$ ,坐标为 $(x_{1},y_{1})$ ,反演圆的圆心是 $B$ 。 | ||
+ | |||
+ | 显然有 | ||
+ | |||
+ | $x_{2}=x_{0}+{\frac {|OB|} {|OA|}}(x_{1}-x_{0})$ | ||
+ | |||
+ | $y_{2}=y_{0}+{\frac {|OB|} {|OA|}}(y_{1}-y_{0})$ | ||
+ | |||
+ | 又因为 $|OB|$ 刚才已经算出来了,所以可以得到反演点坐标 | ||
+ | |||
+ | 过点 $O$ 的圆 $A$ ,其反演图形是不过点 $O$ 的直线。(因为另一个点在无穷远,所以圆无穷大,就变成直线了)然后求出圆心相对要反演的圆的对称点的反演点,然后连接反演点和 $O$ 做个垂线,就是反演的线了。 | ||
+ | |||
+ | 两个图形相切,他们的反演图形也相切。 | ||
+ | |||
+ | ===== 算法实现 ===== | ||
+ | |||
+ | <hidden 实现> | ||
+ | |||
+ | <code cpp> | ||
+ | |||
+ | struct Inversion { | ||
+ | Point o;//反演中心 | ||
+ | double r;//反演半径 | ||
+ | Inversion() {} | ||
+ | Inversion(Point _o,double _r) { | ||
+ | o=_o; | ||
+ | r=_r; | ||
+ | } | ||
+ | //点的反演 flag为0获取失败 1获取成功 | ||
+ | void getPointInv(Point a,Point &aa,int &flag) { | ||
+ | if(a==o) { | ||
+ | flag=0; | ||
+ | aa=a; | ||
+ | return; | ||
+ | } | ||
+ | Point ptmp=a-o; | ||
+ | double len=ptmp.len(); | ||
+ | ptmp=ptmp.trunc(r*r/len); | ||
+ | aa=o+ptmp; | ||
+ | flag=1; | ||
+ | } | ||
+ | //圆的反演 flag为1变成圆 -1变成直线 | ||
+ | void getCircleInv(circle c,Line &l,circle &cc,int &flag) { | ||
+ | if(c.relation(o)^1) { | ||
+ | Point p1,p2,pp1,pp2; | ||
+ | Line lt; | ||
+ | flag=1; | ||
+ | if(c.p==o) { | ||
+ | cc.p=o; | ||
+ | cc.r=r*r/c.r; | ||
+ | return; | ||
+ | } | ||
+ | lt=Line(c.p,o); | ||
+ | int ii=c.pointcrossline(lt,p1,p2); | ||
+ | int f; | ||
+ | getPointInv(p1,pp1,f); | ||
+ | getPointInv(p2,pp2,f); | ||
+ | Point pp=(pp1+pp2)/2; | ||
+ | cc.p=pp; | ||
+ | cc.r=pp1.distance(pp2)/2; | ||
+ | return; | ||
+ | } | ||
+ | flag=-1; | ||
+ | Point ptmp=c.p*2-o,pptmp,p1,p2; | ||
+ | int f; | ||
+ | getPointInv(ptmp,pptmp,f); | ||
+ | p1=o-pptmp; | ||
+ | p1=p1.rotleft(); | ||
+ | p1=p1+pptmp; | ||
+ | l=Line(pptmp,p1); | ||
+ | } | ||
+ | //直线的反演 成圆 | ||
+ | void getLineInv(Line L,circle &cc,int &flag) { | ||
+ | if(L.relation(o)==3) { | ||
+ | flag=0; | ||
+ | return; | ||
+ | } | ||
+ | flag=1; | ||
+ | Point p=L.lineprog(o),ans; | ||
+ | int f; | ||
+ | getPointInv(p,ans,f); | ||
+ | cc.r=ans.distance(o)/2; | ||
+ | cc.p=(ans+o)/2; | ||
+ | } | ||
+ | } iv; | ||
+ | |||
+ | |||
+ | </code> | ||
+ | |||
+ | </hidden> | ||
+ | |||
+ | ===== 代码练习 ===== | ||
+ | |||
+ | 给定两个圆和圆外一点,求过这个点且与这两个圆都外切的圆,输出他们的圆心坐标和半径。 | ||
+ | |||
+ | 显然这个圆如果被那个点反演是一条线,然后另外两个圆还是圆,所以变成求公切线的问题,最后再反演回去,最后要注意要外切,所以两个圆心要都和给定点在切线的同一侧才可以,判断一下就行了。 | ||
+ | |||
+ | <hidden 代码> | ||
+ | |||
+ | <code cpp> | ||
+ | |||
+ | |||
+ | |||
+ | // 如果 A B 两点在直线同侧 返回 true | ||
+ | bool theSameSideOfLine(Point A, Point B) { | ||
+ | return sgn((A-s)^(e-s)) * sgn((B-s)^(e-s)) > 0; | ||
+ | } | ||
+ | |||
+ | |||
+ | |||
+ | // a[i] 和 b[i] 分别是第i条切线在圆A和圆B上的切点 f[i]为1内切 为2外切 | ||
+ | int getTangents(circle A, Point* a, Point* b,int* f) { | ||
+ | circle BB=(*this); | ||
+ | circle B=BB; | ||
+ | int cnt = 0; | ||
+ | if (A.r < B.r) { | ||
+ | swap(A, B); | ||
+ | swap(a, b); | ||
+ | } | ||
+ | double d2 =(A.p.x - B.p.x) * (A.p.x - B.p.x) + (A.p.y - B.p.y) * (A.p.y - B.p.y); | ||
+ | double rdiff = A.r - B.r; | ||
+ | double rsum = A.r + B.r; | ||
+ | if (sgn(d2 - rdiff * rdiff) < 0) return 0; // 内含 | ||
+ | |||
+ | double base = atan2(B.p.y - A.p.y, B.p.x - A.p.x); | ||
+ | Point pa=Point(A.r,0); | ||
+ | Point pb=Point(B.r,0); | ||
+ | Point p0=Point(0,0); | ||
+ | if (sgn(d2) == 0 && sgn(A.r - B.r) == 0) return -1; // 无限多条切线 | ||
+ | if (sgn(d2 - rdiff * rdiff) == 0) { // 内切,一条切线 | ||
+ | a[cnt] = A.p+pa.rotate(p0,base); | ||
+ | b[cnt] = B.p+pb.rotate(p0,base); | ||
+ | f[cnt] = 1; | ||
+ | ++cnt; | ||
+ | return 1; | ||
+ | } | ||
+ | // 有外公切线 | ||
+ | double ang = acos(rdiff / sqrt(d2)); | ||
+ | a[cnt] = A.p+pa.rotate(p0,base+ang); | ||
+ | b[cnt] = B.p+pb.rotate(p0,base+ang); | ||
+ | f[cnt] = 2; | ||
+ | ++cnt; | ||
+ | a[cnt] = A.p+pa.rotate(p0,base-ang); | ||
+ | b[cnt] = B.p+pb.rotate(p0,base-ang); | ||
+ | f[cnt] = 2; | ||
+ | ++cnt; | ||
+ | if (sgn(d2 - rsum * rsum) == 0) { // 一条内公切线 | ||
+ | a[cnt] = A.p+pa.rotate(p0,base); | ||
+ | b[cnt] = B.p+pb.rotate(p0,base+pi); | ||
+ | f[cnt] = 1; | ||
+ | ++cnt; | ||
+ | } else if (sgn(d2 - rsum * rsum) > 0) { // 两条内公切线 | ||
+ | double ang = acos(rsum / sqrt(d2)); | ||
+ | a[cnt] = A.p+pa.rotate(p0,base+ang); | ||
+ | b[cnt] = B.p+pb.rotate(p0,base+pi+ang); | ||
+ | f[cnt] = 1; | ||
+ | ++cnt; | ||
+ | a[cnt] = A.p+pa.rotate(p0,base-ang); | ||
+ | b[cnt] = B.p+pb.rotate(p0,base+pi-ang); | ||
+ | f[cnt] = 1; | ||
+ | ++cnt; | ||
+ | } | ||
+ | return cnt; | ||
+ | |||
+ | } // 两圆公切线 返回切线的条数,-1表示无穷多条切线 | ||
+ | |||
+ | |||
+ | |||
+ | Point LA[1010], LB[1010]; | ||
+ | circle ansc[1010]; | ||
+ | int fl[1010]; | ||
+ | int main() { | ||
+ | int t; | ||
+ | cin>>t; | ||
+ | circle c1,c2; | ||
+ | circle cc1,cc2; | ||
+ | Point pt; | ||
+ | while(t--) { | ||
+ | c1.p.input(); | ||
+ | scanf("%lf",&c1.r); | ||
+ | c2.p.input(); | ||
+ | scanf("%lf",&c2.r); | ||
+ | pt.input(); | ||
+ | iv=Inversion(pt,10.0); | ||
+ | Line lt; | ||
+ | int f; | ||
+ | iv.getCircleInv(c1,lt,cc1,f); | ||
+ | iv.getCircleInv(c2,lt,cc2,f); | ||
+ | Line l1,l2,l3,l4; | ||
+ | circle C1,C2,C3,C4; | ||
+ | int q = cc2.getTangents(cc1, LA, LB, fl), ans = 0; | ||
+ | for (int i = 0; i < q; ++i) { | ||
+ | Line lt=Line(LA[i],LB[i]); | ||
+ | if (lt.theSameSideOfLine(cc1.p, cc2.p)) { | ||
+ | if (!lt.theSameSideOfLine(pt, cc1.p)) continue; | ||
+ | iv.getLineInv(lt,ansc[ans],f); | ||
+ | ans++; | ||
+ | } | ||
+ | } | ||
+ | printf("%d\n", ans); | ||
+ | for (int i = 0; i < ans; ++i) { | ||
+ | printf("%.8f %.8f %.8f\n", ansc[i].p.x, ansc[i].p.y, ansc[i].r); | ||
+ | } | ||
+ | } | ||
+ | return 0; | ||
+ | } | ||
+ | |||
+ | </code> | ||
+ | |||
+ | </hidden> | ||
+ | |||
+ |