这里会显示出您选择的修订版和当前版本之间的差别。
| 两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
|
2020-2021:teams:legal_string:jxm2001:万能欧几里得算法 [2021/08/20 11:31] jxm2001 |
2020-2021:teams:legal_string:jxm2001:万能欧几里得算法 [2021/08/22 15:16] (当前版本) jxm2001 [例题二] |
||
|---|---|---|---|
| 行 160: | 行 160: | ||
| $$ | $$ | ||
| - | f(n)=\sum_{i=0}^n i^{k_1}(\lfloor \frac {ai+b}c\rfloor)^{k_2}\\ | + | f(n)=\sum_{i=0}^n i^{k_1}(\lfloor \frac {ai+b}c\rfloor)^{k_2} |
| $$ | $$ | ||
| 行 255: | 行 255: | ||
| </code> | </code> | ||
| </hidden> | </hidden> | ||
| + | |||
| + | <hidden 卡常版> | ||
| + | <code cpp> | ||
| + | int C[MAXK][MAXK]; | ||
| + | struct Node{ | ||
| + | int cntr,cntu,f[MAXK][MAXK]; | ||
| + | Node(int cntr=0,int cntu=0){ | ||
| + | this->cntr=cntr; | ||
| + | this->cntu=cntu; | ||
| + | mem(f,0); | ||
| + | } | ||
| + | Node operator * (const Node &b)const{ | ||
| + | static int px[MAXK],py[MAXK]; | ||
| + | static int b1[MAXK][MAXK],b2[MAXK][MAXK]; | ||
| + | Node c; | ||
| + | int dx=cntr,dy=cntu; | ||
| + | px[0]=py[0]=1; | ||
| + | _for(i,1,MAXK) | ||
| + | px[i]=1LL*px[i-1]*dx%mod; | ||
| + | _for(i,1,MAXK) | ||
| + | py[i]=1LL*py[i-1]*dy%mod; | ||
| + | _for(i,0,MAXK)_rep(j,0,i){ | ||
| + | b1[i][j]=1LL*C[i][j]*px[i-j]%mod; | ||
| + | b2[i][j]=1LL*C[i][j]*py[i-j]%mod; | ||
| + | } | ||
| + | c.cntr=(cntr+b.cntr)%mod; | ||
| + | c.cntu=(cntu+b.cntu)%mod; | ||
| + | _for(i,0,MAXK)_for(j,0,MAXK){ | ||
| + | c.f[i][j]=f[i][j]; | ||
| + | _rep(i2,0,i)_rep(j2,0,j) | ||
| + | c.f[i][j]=(c.f[i][j]+1LL*b.f[i2][j2]*b1[i][i2]%mod*b2[j][j2])%mod; | ||
| + | } | ||
| + | return c; | ||
| + | } | ||
| + | }; | ||
| + | Node quick_pow(Node n,int k){ | ||
| + | Node ans=Node(0,0); | ||
| + | while(k){ | ||
| + | if(k&1)ans=ans*n; | ||
| + | k>>=1; | ||
| + | if(k)n=n*n; | ||
| + | } | ||
| + | return ans; | ||
| + | } | ||
| + | </code> | ||
| + | </hidden> | ||
| + | |||
| + | ==== 例题三 ==== | ||
| + | |||
| + | [[https://loj.ac/p/6440|LOJ#6440]] | ||
| + | |||
| + | === 题意 === | ||
| + | |||
| + | 求 | ||
| + | |||
| + | $$ | ||
| + | \sum_{i=1}^n A^iB^{\lfloor \cfrac {ai+b}c\rfloor} | ||
| + | $$ | ||
| + | |||
| + | 其中,$A,B$ 为 $k\times k$ 的矩阵。 | ||
| + | |||
| + | === 题解 === | ||
| + | |||
| + | $$ | ||
| + | \begin{equation}\begin{split} | ||
| + | F(S1S2)&=F(S1)+\sum_{i=1}^n A^{i+dx}B^{\lfloor \cfrac {ai+b}c\rfloor+dy}\\ | ||
| + | &=F(S1)+A^{dx}\left(\sum_{i=1}^n B^{\lfloor \cfrac {ai+b}c\rfloor}\right)B^{dy} | ||
| + | &=F(S1)+A^{dx}F(S2)B^{dy} | ||
| + | \end{split}\end{equation} | ||
| + | $$ | ||
| + | |||
| + | 于是可以令 $F(S)$ 维护 $(A^{cntR},B^{cntU},\text{ans})$,设 $E$ 表示单位矩阵,$Z$ 表示全 $0$ 矩阵。 | ||
| + | |||
| + | 边界条件 $F(U)=(E,B,Z),F(R)=(A,E,A),F()=(E,E,Z)$。时间复杂度 $O\left(k^3\log c\right)$。 | ||
| + | |||
| + | <hidden 查看代码> | ||
| + | <code cpp> | ||
| + | const int mod=998244353,MAXN=21; | ||
| + | const __int128 One=1; | ||
| + | int sz; | ||
| + | struct Matrix{ | ||
| + | int a[MAXN][MAXN]; | ||
| + | Matrix(int type=0){ | ||
| + | mem(a,0); | ||
| + | if(type){ | ||
| + | _for(i,0,MAXN) | ||
| + | a[i][i]=1; | ||
| + | } | ||
| + | } | ||
| + | Matrix operator + (const Matrix &b)const{ | ||
| + | Matrix c; | ||
| + | _for(i,0,sz)_for(j,0,sz) | ||
| + | c.a[i][j]=(a[i][j]+b.a[i][j])%mod; | ||
| + | return c; | ||
| + | } | ||
| + | Matrix operator * (const Matrix &b)const{ | ||
| + | Matrix c; | ||
| + | _for(i,0,sz)_for(j,0,sz)_for(k,0,sz) | ||
| + | c.a[i][j]=(c.a[i][j]+1LL*a[i][k]*b.a[k][j])%mod; | ||
| + | return c; | ||
| + | } | ||
| + | }; | ||
| + | struct Node{ | ||
| + | Matrix A,B,f; | ||
| + | Node operator * (const Node &b)const{ | ||
| + | Node c; | ||
| + | c.A=A*b.A; | ||
| + | c.B=B*b.B; | ||
| + | c.f=f+A*b.f*B; | ||
| + | return c; | ||
| + | } | ||
| + | }; | ||
| + | Node quick_pow(Node n,LL k){ | ||
| + | Node ans; | ||
| + | ans.A=Matrix(1); | ||
| + | ans.B=Matrix(1); | ||
| + | while(k){ | ||
| + | if(k&1)ans=ans*n; | ||
| + | n=n*n; | ||
| + | k>>=1; | ||
| + | } | ||
| + | return ans; | ||
| + | } | ||
| + | Node asgcd(LL a,LL b,LL c,LL n,Node su,Node sr){ | ||
| + | if(a>=c) | ||
| + | return asgcd(a%c,b,c,n,su,quick_pow(su,a/c)*sr); | ||
| + | LL m=(One*a*n+b)/c; | ||
| + | if(!m) | ||
| + | return quick_pow(sr,n); | ||
| + | else | ||
| + | return quick_pow(sr,(c-b-1)/a)*su*asgcd(c,(c-b-1)%a,a,m-1,sr,su)*quick_pow(sr,n-(One*c*m-b-1)/a); | ||
| + | } | ||
| + | Matrix A,B; | ||
| + | Node cal(LL a,LL b,LL c,LL n){ | ||
| + | Node su,sr; | ||
| + | su.A=Matrix(1); | ||
| + | su.B=B; | ||
| + | sr.A=A; | ||
| + | sr.B=Matrix(1); | ||
| + | sr.f=A; | ||
| + | return quick_pow(su,b/c)*asgcd(a,b%c,c,n,su,sr); | ||
| + | } | ||
| + | int main() | ||
| + | { | ||
| + | LL a=read_LL(),c=read_LL(),b=read_LL(),n=read_LL(); | ||
| + | sz=read_int(); | ||
| + | _for(i,0,sz)_for(j,0,sz) | ||
| + | A.a[i][j]=read_int(); | ||
| + | _for(i,0,sz)_for(j,0,sz) | ||
| + | B.a[i][j]=read_int(); | ||
| + | Node ans=cal(a,b,c,n); | ||
| + | _for(i,0,sz){ | ||
| + | _for(j,0,sz) | ||
| + | space(ans.f.a[i][j]); | ||
| + | putchar('\n'); | ||
| + | } | ||
| + | return 0; | ||
| + | } | ||
| + | </code> | ||
| + | </hidden> | ||
| + | |||
| ===== 参考资料 ===== | ===== 参考资料 ===== | ||