这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
2020-2021:teams:legal_string:jxm2001:圆方树 [2021/08/07 19:30] jxm2001 [算法实现] |
2020-2021:teams:legal_string:jxm2001:圆方树 [2021/08/07 20:41] (当前版本) jxm2001 |
||
---|---|---|---|
行 1: | 行 1: | ||
- | ====== 圆方树 ====== | + | ====== 广义圆方树 ====== |
===== 算法简介 ===== | ===== 算法简介 ===== | ||
行 21: | 行 21: | ||
<code cpp> | <code cpp> | ||
vector<int> g[MAXN<<1]; | vector<int> g[MAXN<<1]; | ||
- | int node_cnt,blk_sz,val[MAXN<<1]; | + | int node_cnt,val[MAXN<<1]; |
int low[MAXN],dfs_id[MAXN],dfs_t,bcc_cnt; | int low[MAXN],dfs_id[MAXN],dfs_t,bcc_cnt; | ||
vector<int> bcc[MAXN]; | vector<int> bcc[MAXN]; | ||
行 27: | 行 27: | ||
void dfs(int u,int fa){ | void dfs(int u,int fa){ | ||
low[u]=dfs_id[u]=++dfs_t; | low[u]=dfs_id[u]=++dfs_t; | ||
- | blk_sz++; | ||
Stack.push(u); | Stack.push(u); | ||
for(int i=head[u];i;i=edge[i].next){ | for(int i=head[u];i;i=edge[i].next){ | ||
行 61: | 行 60: | ||
if(!dfs_id[i]){ | if(!dfs_id[i]){ | ||
dfs(i,i); | dfs(i,i); | ||
- | Stack.pop(); | + | Stack.pop();//别忘了清空根节点 |
} | } | ||
} | } | ||
行 334: | 行 333: | ||
} | } | ||
int node_cnt; | int node_cnt; | ||
- | int low[MAXN],dfs_id[MAXN],dfs_t,bcc_id[MAXN],bcc_cnt; | + | int low[MAXN],dfs_id[MAXN],dfs_t,bcc_cnt; |
vector<int> bcc[MAXN]; | vector<int> bcc[MAXN]; | ||
- | stack<pair<int,int> >Stack; | + | stack<int>Stack; |
void dfs(int u,int fa){ | void dfs(int u,int fa){ | ||
low[u]=dfs_id[u]=++dfs_t; | low[u]=dfs_id[u]=++dfs_t; | ||
+ | Stack.push(u); | ||
for(int i=head[u];i;i=edge[i].next){ | for(int i=head[u];i;i=edge[i].next){ | ||
int v=edge[i].to; | int v=edge[i].to; | ||
if(v==fa)continue; | if(v==fa)continue; | ||
if(!dfs_id[v]){ | if(!dfs_id[v]){ | ||
- | Stack.push(make_pair(u,v)); | ||
dfs(v,u); | dfs(v,u); | ||
low[u]=min(low[u],low[v]); | low[u]=min(low[u],low[v]); | ||
if(low[v]>=dfs_id[u]){ | if(low[v]>=dfs_id[u]){ | ||
- | pair<int,int> temp; | ||
bcc[++bcc_cnt].clear(); | bcc[++bcc_cnt].clear(); | ||
while(true){ | while(true){ | ||
- | temp=Stack.top();Stack.pop(); | + | int temp=Stack.top();Stack.pop(); |
- | if(bcc_id[temp.first]!=bcc_cnt){ | + | bcc[bcc_cnt].push_back(temp); |
- | bcc_id[temp.first]=bcc_cnt; | + | if(temp==v) |
- | bcc[bcc_cnt].push_back(temp.first); | + | |
- | } | + | |
- | if(bcc_id[temp.second]!=bcc_cnt){ | + | |
- | bcc_id[temp.second]=bcc_cnt; | + | |
- | bcc[bcc_cnt].push_back(temp.second); | + | |
- | } | + | |
- | if(temp.first==u&&temp.second==v) | + | |
break; | break; | ||
} | } | ||
+ | bcc[bcc_cnt].push_back(u); | ||
node_cnt++; | node_cnt++; | ||
for(int node_id:bcc[bcc_cnt]){ | for(int node_id:bcc[bcc_cnt]){ | ||
行 369: | 行 361: | ||
} | } | ||
} | } | ||
- | else if(dfs_id[v]<dfs_id[u]){ | + | else if(dfs_id[v]<dfs_id[u]) |
- | Stack.push(make_pair(u,v)); | + | low[u]=min(low[u],dfs_id[v]); |
- | low[u]=min(low[u],dfs_id[v]); | + | |
- | } | + | |
} | } | ||
} | } | ||
行 386: | 行 376: | ||
node_cnt=n; | node_cnt=n; | ||
dfs(1,1); | dfs(1,1); | ||
+ | Stack.pop(); | ||
Tree::build(n); | Tree::build(n); | ||
while(q--){ | while(q--){ | ||
行 567: | 行 558: | ||
while(T--){ | while(T--){ | ||
solve(); | solve(); | ||
+ | } | ||
+ | return 0; | ||
+ | } | ||
+ | </code> | ||
+ | </hidden> | ||
+ | |||
+ | ====== 狭义圆方树 ====== | ||
+ | |||
+ | ===== 算法简介 ===== | ||
+ | |||
+ | 一种应用于仙人掌图的特殊圆方树。其中,定义仙人掌一类连通图,图中每条边至多出现在一个环中。 | ||
+ | |||
+ | ===== 算法实现 ===== | ||
+ | |||
+ | [[https://www.luogu.com.cn/problem/P5236|洛谷p5236]] | ||
+ | |||
+ | 与广义圆方树的唯一区别在于狭义圆方树不存在大小为 $2$ 的双连通分量。 | ||
+ | |||
+ | 这样,该图的所有连通分量大小至少为 $3$,且一定构成环。每个方点一定与圆点连边,但圆点也可能与圆点连边。 | ||
+ | |||
+ | 由于仙人掌的特殊性,可以用圆方树求图中任意两点最短路。其中,对于大小为 $2$ 的连通分量,不添加方点,两圆点直接连边。 | ||
+ | |||
+ | 对大小超过 $2$ 的连通分量,新建一个方点,每个点向方点连边,边权为该点到确立该连通分量的割点的环上最短距离。 | ||
+ | |||
+ | 同时每个圆点也记录该点到确立该连通分量的割点的 $\text{Tarjan}$ 树上距离,每个方点记录环的总长度。 | ||
+ | |||
+ | 查询时,如果两点 $\text{LCA}$ 为圆点,则答案就是最短距离。否则两个点先跳到 $\text{LCA}$ 的儿子,然后根据儿子点权和方点点权计算距离。 | ||
+ | |||
+ | <hidden 查看代码> | ||
+ | <code cpp> | ||
+ | const int MAXN=1e4+5,MAXM=2e4+5; | ||
+ | const int MAXN2=MAXN<<1; | ||
+ | struct Edge{ | ||
+ | int to,w,next; | ||
+ | }; | ||
+ | namespace Tree{ | ||
+ | Edge edge[MAXN2<<1]; | ||
+ | int n,head[MAXN2],edge_cnt,val[MAXN2]; | ||
+ | void Insert(int u,int v,int w){ | ||
+ | edge[++edge_cnt]=Edge{v,w,head[u]}; | ||
+ | head[u]=edge_cnt; | ||
+ | } | ||
+ | int d[MAXN2],sz[MAXN2],f[MAXN2],dfs_id[MAXN2],dfs_t; | ||
+ | int h_son[MAXN2],mson[MAXN2],p[MAXN2]; | ||
+ | LL dis[MAXN2]; | ||
+ | void dfs_1(int u,int fa,int depth){ | ||
+ | sz[u]=1;f[u]=fa;d[u]=depth;mson[u]=0; | ||
+ | for(int i=head[u];i;i=edge[i].next){ | ||
+ | int v=edge[i].to; | ||
+ | if(v==fa) | ||
+ | continue; | ||
+ | dis[v]=dis[u]+edge[i].w; | ||
+ | dfs_1(v,u,depth+1); | ||
+ | sz[u]+=sz[v]; | ||
+ | if(sz[v]>mson[u]){ | ||
+ | h_son[u]=v; | ||
+ | mson[u]=sz[v]; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | void dfs_2(int u,int top){ | ||
+ | dfs_id[u]=++dfs_t;p[u]=top; | ||
+ | if(mson[u]) | ||
+ | dfs_2(h_son[u],top); | ||
+ | for(int i=head[u];i;i=edge[i].next){ | ||
+ | int v=edge[i].to; | ||
+ | if(v==f[u]||v==h_son[u]) | ||
+ | continue; | ||
+ | dfs_2(v,v); | ||
+ | } | ||
+ | } | ||
+ | void build(int _n){ | ||
+ | n=_n; | ||
+ | dfs_1(1,0,0); | ||
+ | dfs_2(1,1); | ||
+ | } | ||
+ | int find_son(int u,int anc){ | ||
+ | int son; | ||
+ | while(p[u]!=p[anc]){ | ||
+ | son=p[u]; | ||
+ | u=f[p[u]]; | ||
+ | } | ||
+ | return u==anc?son:h_son[anc]; | ||
+ | } | ||
+ | int LCA(int u,int v){ | ||
+ | while(p[u]!=p[v]){ | ||
+ | if(d[p[u]]<d[p[v]])swap(u,v); | ||
+ | u=f[p[u]]; | ||
+ | } | ||
+ | return d[u]<d[v]?u:v; | ||
+ | } | ||
+ | int query(int u,int v){ | ||
+ | int p=LCA(u,v); | ||
+ | if(p<=n) | ||
+ | return dis[u]+dis[v]-dis[p]*2; | ||
+ | else{ | ||
+ | int p1=find_son(u,p),p2=find_son(v,p); | ||
+ | int d=min(abs(val[p1]-val[p2]),val[p]-abs(val[p1]-val[p2])); | ||
+ | return dis[u]-dis[p1]+dis[v]-dis[p2]+d; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | Edge edge[MAXM<<1]; | ||
+ | int head[MAXN],edge_cnt; | ||
+ | void Insert(int u,int v,int w){ | ||
+ | edge[++edge_cnt]=Edge{v,w,head[u]}; | ||
+ | head[u]=edge_cnt; | ||
+ | } | ||
+ | int node_cnt,val[MAXN<<1]; | ||
+ | int low[MAXN],dfs_id[MAXN],f[MAXN],dfs_t,bcc_cnt; | ||
+ | LL dis[MAXN]; | ||
+ | void link(int u,int v,int w){ | ||
+ | LL s=dis[v]-dis[u]+w; | ||
+ | Tree::val[++node_cnt]=s; | ||
+ | int pos=v; | ||
+ | while(pos!=f[u]){ | ||
+ | int w2=min(dis[pos]-dis[u],s-(dis[pos]-dis[u])); | ||
+ | Tree::Insert(node_cnt,pos,w2); | ||
+ | Tree::Insert(pos,node_cnt,w2); | ||
+ | Tree::val[pos]=dis[pos]-dis[u]; | ||
+ | pos=f[pos]; | ||
+ | } | ||
+ | } | ||
+ | void dfs(int u){ | ||
+ | low[u]=dfs_id[u]=++dfs_t; | ||
+ | for(int i=head[u];i;i=edge[i].next){ | ||
+ | int v=edge[i].to; | ||
+ | if(v==f[u])continue; | ||
+ | if(!dfs_id[v]){ | ||
+ | dis[v]=dis[u]+edge[i].w; | ||
+ | f[v]=u; | ||
+ | dfs(v); | ||
+ | low[u]=min(low[u],low[v]); | ||
+ | if(low[v]>dfs_id[u]) | ||
+ | Tree::Insert(u,v,edge[i].w); | ||
+ | } | ||
+ | else if(dfs_id[v]<dfs_id[u]) | ||
+ | low[u]=min(low[u],dfs_id[v]); | ||
+ | else | ||
+ | link(u,v,edge[i].w); | ||
+ | } | ||
+ | } | ||
+ | void build_tree(int n){ | ||
+ | mem(dfs_id,0); | ||
+ | mem(f,0); | ||
+ | dfs_t=bcc_cnt=0; | ||
+ | node_cnt=n; | ||
+ | dfs(1); | ||
+ | Tree::build(n); | ||
+ | } | ||
+ | int main(){ | ||
+ | int n=read_int(),m=read_int(),q=read_int(); | ||
+ | while(m--){ | ||
+ | int u=read_int(),v=read_int(),w=read_int(); | ||
+ | Insert(u,v,w); | ||
+ | Insert(v,u,w); | ||
+ | } | ||
+ | build_tree(n); | ||
+ | while(q--){ | ||
+ | int u=read_int(),v=read_int(); | ||
+ | enter(Tree::query(u,v)); | ||
} | } | ||
return 0; | return 0; |