这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
2020-2021:teams:legal_string:jxm2001:数论_2 [2020/07/03 19:39] jxm2001 |
2020-2021:teams:legal_string:jxm2001:数论_2 [2020/07/27 22:56] (当前版本) jxm2001 ↷ 页面2020-2021:teams:legal_string:数论_2被移动至2020-2021:teams:legal_string:jxm2001:数论_2 |
||
---|---|---|---|
行 88: | 行 88: | ||
=== 定义 === | === 定义 === | ||
- | \begin{equation}\varphi(n)=\sum_{m=1}^n [(n,m)=1]\end{equation} | + | \begin{equation}\varphi(n)=\sum_{m=1}^n [(n,m)==1]\end{equation} |
=== 性质 === | === 性质 === | ||
行 99: | 行 99: | ||
==== 其他常见可积函数 ==== | ==== 其他常见可积函数 ==== | ||
- | \begin{equation}d(n)=\sum_{d\mid n}1=\prod_{i=1}^k(\alpha_k+1)\end{equation} | + | \begin{equation}\tau(n)=\sum_{d\mid n}1=\prod_{i=1}^k(\alpha_k+1)\end{equation} |
\begin{equation}\sigma (n)=\sum_{d\mid n}d=\prod_{i=1}^k\left(1+p_k+p_k^2+...+p_k^{\alpha_k} | \begin{equation}\sigma (n)=\sum_{d\mid n}d=\prod_{i=1}^k\left(1+p_k+p_k^2+...+p_k^{\alpha_k} | ||
行 186: | 行 186: | ||
<hidden 线性筛因子个数函数> | <hidden 线性筛因子个数函数> | ||
<code cpp> | <code cpp> | ||
- | const int MAXP=2e6; | + | const int MAXP=1e6; |
bool vis[MAXP]; | bool vis[MAXP]; | ||
- | int prime[MAXP],d[MAXP],mpow[MAXP],cnt; | + | int prime[MAXP],tau[MAXP],mpow[MAXP],cnt; |
- | void D(){ | + | void Tau(){ |
- | vis[1]=true,d[1]=1; | + | vis[1]=true,tau[1]=1; |
_for(i,2,MAXP){ | _for(i,2,MAXP){ | ||
- | if(!vis[i])d[i]=2,mpow[i]=1,prime[cnt++]=i; | + | if(!vis[i])tau[i]=2,mpow[i]=1,prime[cnt++]=i; |
for(int j=0;j<cnt&&prime[j]*i<MAXP;j++){ | for(int j=0;j<cnt&&prime[j]*i<MAXP;j++){ | ||
vis[i*prime[j]]=true; | vis[i*prime[j]]=true; | ||
if(i%prime[j]) | if(i%prime[j]) | ||
- | d[i*prime[j]]=d[i]<<1,mpow[i*prime[j]]=1; | + | tau[i*prime[j]]=tau[i]<<1,mpow[i*prime[j]]=1; |
else{ | else{ | ||
- | d[i*prime[j]]=d[i]/(mpow[i]+1)*(mpow[i]+2),mpow[i*prime[j]]=mpow[i]+1; | + | tau[i*prime[j]]=tau[i]/(mpow[i]+1)*(mpow[i]+2),mpow[i*prime[j]]=mpow[i]+1; |
break; | break; | ||
} | } | ||
行 244: | 行 244: | ||
==== 莫比乌斯反演定理 ==== | ==== 莫比乌斯反演定理 ==== | ||
- | 设 $F(x)$、$f(x)$ 为数论函数,若 \begin{equation}F(n)=\sum_{d\mid n}f(d)\end{equation} | + | 设 $F(x)$、$f(x)$ 为数论函数 \begin{equation}F(n)=\sum_{d\mid n}f(d)\iff f(n)=\sum_{d\mid n}\mu (d)F(\frac nd)\tag{8}\end{equation} |
- | 则 \begin{equation}f(n)=\sum_{d\mid n}\mu (d)F(\frac nd)\tag{8}\end{equation} | + | 该定理的另一种形式为 \begin{equation}F(n)=\sum_{n\mid d}f(d)\iff f(n)=\sum_{n\mid d}\mu (\frac dn)F(d)\tag{9}\end{equation} |
- | + | ||
- | 该定理的另一种形式为若 \begin{equation}F(n)=\sum_{n\mid d}f(d)\end{equation} | + | |
- | + | ||
- | 则 \begin{equation}f(n)=\sum_{n\mid d}\mu (\frac dn)F(d)\tag{9}\end{equation} | + | |
事实上,该定理等价于若 $F=f\ast I$,则 $f=F\ast\mu$。简单地说,莫比乌斯反演定理即证明 $e=I\ast \mu$。 | 事实上,该定理等价于若 $F=f\ast I$,则 $f=F\ast\mu$。简单地说,莫比乌斯反演定理即证明 $e=I\ast \mu$。 | ||
行 268: | 行 264: | ||
3、$I\ast id=\sigma$ | 3、$I\ast id=\sigma$ | ||
- | 4、$I\ast I=d$ | + | 4、$I\ast I=\tau$ |
5、$I\ast \varphi=id$ | 5、$I\ast \varphi=id$ | ||
+ | |||
+ | 6、$\tau \ast\varphi=\sigma$ | ||
=== 证明 1 === | === 证明 1 === | ||
行 291: | 行 289: | ||
根据前面结论,$I\ast \varphi=I\ast (\mu\ast id)=(I\ast \mu)\ast id=e\ast id=id$。 | 根据前面结论,$I\ast \varphi=I\ast (\mu\ast id)=(I\ast \mu)\ast id=e\ast id=id$。 | ||
+ | |||
+ | === 证明 6 === | ||
+ | |||
+ | 根据前面结论,$\tau \ast\varphi=(I\ast I)\ast(\mu\ast id)=(I\ast\mu)\ast(I\ast id)=e\ast \sigma=\sigma$。 | ||
===== 算法练习 ===== | ===== 算法练习 ===== | ||
==== 习题1 ==== | ==== 习题1 ==== | ||
+ | |||
+ | [[https://www.luogu.com.cn/problem/P3455|洛谷p3455]] | ||
=== 题意 === | === 题意 === | ||
+ | |||
+ | 给定 $a,b,d$,求满足 $x\le a,y\le b,(x,y)=d$ 的二元组。 | ||
+ | |||
+ | === 题解 1 === | ||
+ | |||
+ | 在约束条件 $i\le a,j\le b$ 下,设 $f(n)$ 为满足 $(i,j)=n$ 的二元组个数,$F(n)$ 为满足 $n\mid (i,j)$ 的二元组个数。 | ||
+ | |||
+ | \begin{equation}f(n)=\sum_{i=1}^a\sum_{j=1}^b[(i,j)==n]\end{equation} | ||
+ | |||
+ | \begin{equation}F(n)=\sum_{i=1}^a\sum_{j=1}^b[n\mid (i,j)]=\lfloor \frac an\rfloor\lfloor \frac bn\rfloor\end{equation} | ||
+ | |||
+ | 根据莫比乌斯反演定理,有 | ||
+ | |||
+ | \begin{equation}Ans=f(d)=\sum_{d\mid k}^{k\le min(a,b)}\mu (\lfloor \frac kd\rfloor)F(k)=\sum_{d\mid k}^{k\le min(a,b)}\mu (\lfloor \frac kd\rfloor)\lfloor\frac ak\rfloor\lfloor \frac bk\rfloor\end{equation} | ||
+ | |||
+ | 设 $k=t\ast d$,改为枚举 $t$,有 | ||
+ | |||
+ | \begin{equation}\sum_{d\mid k}^{k\le min(a,b)}\mu (\lfloor \frac kd\rfloor)\lfloor\frac ak\rfloor\lfloor \frac bk\rfloor=\sum_{t=1}^{t\ast d\le \min(a,b)}\mu (t)\lfloor\frac a{t\ast d}\rfloor\lfloor \frac b{t\ast d}\rfloor\end{equation} | ||
+ | |||
+ | 剩下部分数论分块即可,时间复杂度 $O(\sqrt n)$。 | ||
+ | |||
+ | <hidden 查看代码> | ||
+ | <code cpp> | ||
+ | const int MAXP=5e4+5; | ||
+ | bool vis[MAXP]; | ||
+ | int prime[MAXP],mu[MAXP],cnt; | ||
+ | void Mu(){ | ||
+ | vis[1]=true,mu[1]=1; | ||
+ | _for(i,2,MAXP){ | ||
+ | if(!vis[i])mu[i]=-1,prime[cnt++]=i; | ||
+ | for(int j=0;j<cnt&&i*prime[j]<MAXP;j++){ | ||
+ | vis[i*prime[j]]=true; | ||
+ | if(i%prime[j]) | ||
+ | mu[i*prime[j]]=-mu[i]; | ||
+ | else{ | ||
+ | mu[i*prime[j]]=0; | ||
+ | break; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | int Ceil(int x,int y){return x%y?x/y+1:x/y;} | ||
+ | LL cal(int i,int n,int m,int k){ | ||
+ | LL ans=0; | ||
+ | int lef=1,rig=0,tlef=Ceil(lef,k),trig; | ||
+ | while(tlef*k<=i){ | ||
+ | rig=min(i,min(n/(n/lef),m/(m/lef))); | ||
+ | trig=rig/k; | ||
+ | if(trig>=tlef) | ||
+ | ans+=1LL*(mu[trig]-mu[tlef-1])*(n/lef)*(m/lef); | ||
+ | lef=rig+1; | ||
+ | tlef=Ceil(lef,k); | ||
+ | } | ||
+ | return ans; | ||
+ | } | ||
+ | int main() | ||
+ | { | ||
+ | Mu(); | ||
+ | _for(i,2,MAXP) | ||
+ | mu[i]+=mu[i-1]; | ||
+ | int t=read_int(),a,b,d; | ||
+ | while(t--){ | ||
+ | a=read_int(),b=read_int(),d=read_int(); | ||
+ | enter(cal(min(a,b),a,b,d)); | ||
+ | } | ||
+ | return 0; | ||
+ | } | ||
+ | </code> | ||
+ | </hidden> | ||
+ | |||
+ | === 题解 2 === | ||
+ | |||
+ | \begin{equation}Ans=\sum_{i=1}^a\sum_{j=1}^b[(i,j)==d]=\sum_{d\mid i}\sum_{d\mid j}[(i,j)==d]\end{equation} | ||
+ | |||
+ | 改为枚举 $d$ 的倍数,根据 $(6)$ 式有 | ||
+ | |||
+ | \begin{equation}\sum_{d\mid i}\sum_{d\mid j}[(i,j)==d]=\sum_i^{\lfloor \frac ad\rfloor}\sum_j^{\lfloor \frac bd\rfloor}[(i,j)==1]=\sum_i^{\lfloor \frac ad\rfloor}\sum_j^{\lfloor \frac bd\rfloor}\sum_{k\mid(i,j)}\mu(k)\end{equation} | ||
+ | |||
+ | 考虑改变枚举顺序,有 | ||
+ | |||
+ | \begin{equation}\sum_i^{\lfloor\frac ad\rfloor}\sum_j^{\lfloor\frac bd\rfloor}\sum_{k\mid(i,j)}\mu(k)=\sum_{k=1}^{\min(\lfloor\frac ad\rfloor,\lfloor\frac bd\rfloor)}\sum_{k\mid i}^{i\le\lfloor\frac ad\rfloor}\sum_{k\mid j}^{j\le\lfloor\frac bd\rfloor}\mu(k)=\sum_{k=1}^{\min(\lfloor\frac ad\rfloor,\lfloor\frac bd\rfloor)}\lfloor\frac{\lfloor\frac ad\rfloor}k\rfloor\lfloor\frac{\lfloor\frac bd\rfloor}k\rfloor\mu(k)\end{equation} | ||
+ | |||
+ | 剩下部分数论分块即可,时间复杂度 $O(\sqrt n)$。 | ||
+ | |||
+ | <hidden 查看代码> | ||
+ | <code cpp> | ||
+ | const int MAXP=5e4+5; | ||
+ | bool vis[MAXP]; | ||
+ | int prime[MAXP],mu[MAXP],cnt; | ||
+ | void Mu(){ | ||
+ | vis[1]=true,mu[1]=1; | ||
+ | _for(i,2,MAXP){ | ||
+ | if(!vis[i])mu[i]=-1,prime[cnt++]=i; | ||
+ | for(int j=0;j<cnt&&i*prime[j]<MAXP;j++){ | ||
+ | vis[i*prime[j]]=true; | ||
+ | if(i%prime[j]) | ||
+ | mu[i*prime[j]]=-mu[i]; | ||
+ | else{ | ||
+ | mu[i*prime[j]]=0; | ||
+ | break; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | LL cal(int i,int n,int m){ | ||
+ | LL ans=0; | ||
+ | int lef=1,rig=0; | ||
+ | while(lef<=i){ | ||
+ | rig=min(i,min(n/(n/lef),m/(m/lef))); | ||
+ | ans+=1LL*(mu[rig]-mu[lef-1])*(n/lef)*(m/lef); | ||
+ | lef=rig+1; | ||
+ | } | ||
+ | return ans; | ||
+ | } | ||
+ | int main() | ||
+ | { | ||
+ | Mu(); | ||
+ | _for(i,2,MAXP) | ||
+ | mu[i]+=mu[i-1]; | ||
+ | int t=read_int(),a,b,d; | ||
+ | while(t--){ | ||
+ | a=read_int(),b=read_int(),d=read_int(); | ||
+ | a/=d,b/=d; | ||
+ | enter(cal(min(a,b),a,b)); | ||
+ | } | ||
+ | return 0; | ||
+ | } | ||
+ | </code> | ||
+ | </hidden> | ||
+ | |||
+ | 比较题解 1 与题解 2 最后的式子,发现 | ||
+ | |||
+ | \begin{equation}\sum_{k=1}^{k\ast d\le \min(a,b)}\lfloor\frac a{k\ast d}\rfloor\lfloor \frac b{k\ast d}\rfloor=\sum_{k=1}^{\min(\lfloor\frac ad\rfloor,\lfloor\frac bd\rfloor)}\lfloor\frac{\lfloor\frac ad\rfloor}k\rfloor\lfloor\frac{\lfloor\frac bd\rfloor}k\rfloor\tag{10}\end{equation} | ||
+ | |||
+ | ==== 习题2 ==== | ||
+ | |||
+ | [[https://www.luogu.com.cn/problem/P3327|洛谷p3327]] | ||
+ | |||
+ | === 题意 === | ||
+ | |||
+ | 给定 $n,m$,求 $\sum_{i=1}^n\sum_{j=1}^m\tau(ij)$。 | ||
+ | |||
+ | === 引理 === | ||
+ | |||
+ | \begin{equation}\tau(ij)=\sum_{x\mid i}\sum_{y\mid j}[(x,y)==1]\tag{11}\end{equation} | ||
+ | |||
+ | == 证明 == | ||
+ | |||
+ | 设 $ij=p_1^{\alpha_1}p_2^{\alpha_2}... p_k^{\alpha_k},i=p_1^{\beta_1}p_2^{\beta_2}... p_k^{\beta_k}$,对每个 $ij$ 的因子 $z=p_1^{z_1}p_2^{z_2}... p_k^{z_k}$,构造如下映射 | ||
+ | |||
+ | \begin{equation}\begin{pmatrix}z_1&z_2&\cdots &z_k\\ \end{pmatrix}\longleftrightarrow\begin{pmatrix}x_1&x_2&\cdots &x_k\\y_1&y_2&\cdots &y_k\\ \end{pmatrix},\text{其中}\left \{ | ||
+ | \begin{array}{l} | ||
+ | x_i=[z_i\le \beta_i]z_i \\ | ||
+ | y_i=[z_i\gt \beta_i](z_i-\beta_i) | ||
+ | \end{array} | ||
+ | \right.\end{equation} | ||
+ | |||
+ | 容易验证这是个双射,所以枚举 $z$ 等价于枚举 $x=p_1^{x_1}p_2^{x_2}... p_k^{x_k},y=p_1^{y_1}p_2^{y_2}... p_k^{y_k},x\mid i,y\mid j,(x,y)=1$,证毕。 | ||
+ | |||
+ | 顺便给出式子\begin{equation}\varphi(ij)=\sum_{x\mid i}\sum_{y\mid j}\frac{iy}x[(x,y)==1]\tag{12}\end{equation} | ||
+ | |||
+ | 证明方法为构造如下映射 | ||
+ | |||
+ | \begin{equation}\begin{pmatrix}z_1&z_2&\cdots &z_k\\ \end{pmatrix}\longleftrightarrow\begin{pmatrix}x_1&x_2&\cdots &x_k\\y_1&y_2&\cdots &y_k\\ \end{pmatrix},\text{其中}\left \{ | ||
+ | \begin{array}{l} | ||
+ | x_i=[z_i\le \beta_i](\beta_i-z_i) \\ | ||
+ | y_i=[z_i\gt \beta_i](z_i-\beta_i) | ||
+ | \end{array} | ||
+ | \right.\end{equation} | ||
+ | |||
+ | 容易验证这是个双射,且 $z=\frac{iy}x$。 | ||
=== 题解 === | === 题解 === | ||
+ | |||
+ | 根据引理,同时改变枚举顺序有\begin{equation}\sum_{i=1}^n\sum_{j=1}^m\tau(ij)=\sum_{i=1}^n\sum_{j=1}^m\sum_{x\mid i}\sum_{y\mid j}[(x,y)==1]=\sum_{x=1}^n\sum_{y=1}^m\lfloor\frac nx\rfloor\lfloor\frac my\rfloor[(x,y)==1]\end{equation} | ||
+ | |||
+ | 根据 $(6)$ 式并再次改变枚举顺序有 | ||
+ | |||
+ | \begin{equation}\sum_{x=1}^n\sum_{y=1}^m\lfloor\frac nx\rfloor\lfloor\frac my\rfloor[(x,y)==1]=\sum_{x=1}^n\sum_{y=1}^m\lfloor\frac nx\rfloor\lfloor\frac my\rfloor\sum_{d=1}^{(x,y)}\mu(d)=\sum_{d=1}^{\min(n,m)}\sum_{d\mid x}^{x\le n}\sum_{d\mid y}^{y\le m}\lfloor\frac nx\rfloor\lfloor\frac my\rfloor\mu(d)\end{equation} | ||
+ | |||
+ | 改为枚举倍数,再根据 $(10)$ 式有 | ||
+ | |||
+ | \begin{equation}\sum_{d=1}^{\min(n,m)}\sum_{d\mid x}^{x\le n}\sum_{d\mid y}^{y\le m}\lfloor\frac nx\rfloor\lfloor\frac my\rfloor\mu(d)=\sum_{d=1}^{\min(n,m)}\sum_{x=1}^{\lfloor\frac nd\rfloor}\sum_{y=1}^{\lfloor\frac md\rfloor}\lfloor\frac{\lfloor\frac nd\rfloor}x\rfloor\lfloor\frac{\lfloor\frac md\rfloor}y\rfloor\mu(d)=\sum_{d=1}^{\min(n,m)}\mu(d)\left(\sum_{x=1}^{\lfloor\frac nd\rfloor}\lfloor\frac{\lfloor\frac nd\rfloor}x\rfloor\right)\left(\sum_{y=1}^{\lfloor\frac md\rfloor}\lfloor\frac{\lfloor\frac md\rfloor}y\rfloor\right)\end{equation} | ||
+ | |||
+ | 设 $f(n)=\sum_{i=1}^n \lfloor\frac ni\rfloor$,则 | ||
+ | |||
+ | \begin{equation}\text{Ans}=\sum_{d=1}^{\min(n,m)}\mu(d)f(\lfloor\frac nd\rfloor)f(\lfloor\frac md\rfloor)\end{equation} | ||
+ | |||
+ | $O\left(n\sqrt n\right)$ 时间预处理出 $f$ 后可以 $O(\sqrt n)$ 处理每个询问。 | ||
<hidden 查看代码> | <hidden 查看代码> | ||
<code cpp> | <code cpp> | ||
+ | const int MAXP=5e4+5; | ||
+ | bool vis[MAXP]; | ||
+ | int prime[MAXP],mu[MAXP],cnt,f[MAXP]; | ||
+ | void Mu(){ | ||
+ | vis[1]=true,mu[1]=1; | ||
+ | _for(i,2,MAXP){ | ||
+ | if(!vis[i])mu[i]=-1,prime[cnt++]=i; | ||
+ | for(int j=0;j<cnt&&i*prime[j]<MAXP;j++){ | ||
+ | vis[i*prime[j]]=true; | ||
+ | if(i%prime[j]) | ||
+ | mu[i*prime[j]]=-mu[i]; | ||
+ | else{ | ||
+ | mu[i*prime[j]]=0; | ||
+ | break; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | int cal(int n){ | ||
+ | int lef=1,rig=0,ans=0; | ||
+ | while(lef<=n){ | ||
+ | rig=n/(n/lef); | ||
+ | ans+=(rig-lef+1)*(n/lef); | ||
+ | lef=rig+1; | ||
+ | } | ||
+ | return ans; | ||
+ | } | ||
+ | inline LL cal(int i,int n,int m){ | ||
+ | int lef=1,rig=0; | ||
+ | LL ans=0; | ||
+ | while(lef<=i){ | ||
+ | rig=min(n/(n/lef),m/(m/lef)); | ||
+ | ans+=1LL*f[n/lef]*f[m/lef]*(mu[rig]-mu[lef-1]); | ||
+ | lef=rig+1; | ||
+ | } | ||
+ | return ans; | ||
+ | } | ||
+ | int main() | ||
+ | { | ||
+ | Mu(); | ||
+ | _for(i,2,MAXP) | ||
+ | mu[i]+=mu[i-1]; | ||
+ | _for(i,1,MAXP) | ||
+ | f[i]=cal(i); | ||
+ | int t=read_int(),n,m; | ||
+ | while(t--){ | ||
+ | n=read_int(),m=read_int(); | ||
+ | enter(cal(min(n,m),n,m)); | ||
+ | } | ||
+ | return 0; | ||
+ | } | ||
</code> | </code> | ||
</hidden> | </hidden> | ||
+ | |||
+ | ==== 习题3 ==== | ||
+ | |||
+ | [[https://www.luogu.com.cn/problem/P3704|洛谷p3704]] | ||
+ | |||
+ | === 题意 === | ||
+ | |||
+ | 共 $T$ 组询问,每次询问 $\prod_{i=1}^n\prod_{j=1}^mf_{\text{gcd}(i,j)}\bmod p$,其中 $f$ 表示斐波那契数列,且$f_0=0,f_1=1$。 | ||
+ | |||
+ | === 题解 === | ||
+ | |||
+ | 不妨设 $n\le m$。 | ||
+ | |||
+ | 首先按套路把 $\text{gcd}$ 换成莫比乌斯函数,有 | ||
+ | |||
+ | \begin{equation}\prod_{i=1}^n\prod_{j=1}^mf_{\text{gcd}(i,j)}=\prod_{d=1}^n\prod_{i=1}^n\prod_{j=1}^mf_d[(i,j)==d]=\prod_{d=1}^nf_d^{\sum_{i=1}^n\sum_{j=1}^m[(i,j)==d]}=\prod_{d=1}^n f_d^{\sum_{k=1}^{\lfloor\frac nd\rfloor}\mu(k)\lfloor\frac n{kd}\rfloor\lfloor\frac m{kd}\rfloor}\end{equation} | ||
+ | |||
+ | 令 $T=kd$,有 | ||
+ | |||
+ | \begin{equation}\prod_{d=1}^n f_d^{\sum_{k=1}^{\lfloor\frac nd\rfloor}\mu(k)\lfloor\frac n{kd}\rfloor\lfloor\frac m{kd}\rfloor}=\prod_{T=1}^n\left(\prod_{d\mid T}f_d^{\mu(\frac Td)}\right)^{\lfloor\frac nT\rfloor\lfloor\frac mT\rfloor}\end{equation} | ||
+ | |||
+ | 外部指数部分考虑数论分块。内部可以先预处理,枚举 $d$,对每个 $T=kd$ 计算贡献。 | ||
+ | |||
+ | 预处理时间复杂度 $O(n\log p+\sum_{i=1}^n \frac ni)=O(n(\log n+\log p))$,询问的时间复杂度为 $O(T\sqrt n\log p)$。 | ||
+ | |||
+ | <hidden 查看代码> | ||
+ | <code cpp> | ||
+ | const int MAXN=1e6+5,mod=1e9+7; | ||
+ | bool vis[MAXN]; | ||
+ | int prime[MAXN],mu[MAXN],f[MAXN],s[MAXN],s_inv[MAXN],cnt; | ||
+ | int quick_pow(int a,int b){ | ||
+ | LL t=1; | ||
+ | while(b){ | ||
+ | if(b&1) | ||
+ | t=t*a%mod; | ||
+ | a=1LL*a*a%mod; | ||
+ | b>>=1; | ||
+ | } | ||
+ | return t%mod; | ||
+ | } | ||
+ | void Pre(){ | ||
+ | vis[1]=true,mu[1]=1;f[0]=0,f[1]=1; | ||
+ | _for(i,2,MAXN){ | ||
+ | f[i]=(f[i-2]+f[i-1])%mod; | ||
+ | if(!vis[i])mu[i]=-1,prime[cnt++]=i; | ||
+ | for(int j=0;j<cnt&&i*prime[j]<MAXN;j++){ | ||
+ | vis[i*prime[j]]=true; | ||
+ | if(i%prime[j]) | ||
+ | mu[i*prime[j]]=-mu[i]; | ||
+ | else{ | ||
+ | mu[i*prime[j]]=0; | ||
+ | break; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | _for(i,0,MAXN) | ||
+ | s[i]=s_inv[i]=1; | ||
+ | int base[3]={1,1,1},*t=base+1; | ||
+ | _for(i,2,MAXN){ | ||
+ | t[-1]=quick_pow(f[i],mod-2),t[1]=f[i]; | ||
+ | for(int j=1;j*i<MAXN;j++){ | ||
+ | s[i*j]=1LL*s[i*j]*t[mu[j]]%mod; | ||
+ | s_inv[i*j]=1LL*s_inv[i*j]*t[-mu[j]]%mod; | ||
+ | } | ||
+ | } | ||
+ | _for(i,2,MAXN) | ||
+ | s[i]=1LL*s[i]*s[i-1]%mod,s_inv[i]=1LL*s_inv[i]*s_inv[i-1]%mod; | ||
+ | } | ||
+ | int cal(int n,int m){ | ||
+ | int lef=1,rig; | ||
+ | LL ans=1; | ||
+ | while(lef<=n){ | ||
+ | rig=min(n/(n/lef),m/(m/lef)); | ||
+ | ans=ans*quick_pow(1LL*s[rig]*s_inv[lef-1]%mod,1LL*(n/lef)*(m/lef)%(mod-1))%mod; | ||
+ | lef=rig+1; | ||
+ | } | ||
+ | return (ans+mod)%mod; | ||
+ | } | ||
+ | int main() | ||
+ | { | ||
+ | int t=read_int(),n,m; | ||
+ | Pre(); | ||
+ | while(t--){ | ||
+ | n=read_int(),m=read_int(); | ||
+ | enter(cal(min(n,m),max(n,m))); | ||
+ | } | ||
+ | return 0; | ||
+ | } | ||
+ | </code> | ||
+ | </hidden> | ||
+ |