这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
2020-2021:teams:legal_string:jxm2001:树套树 [2020/07/11 17:16] jxm2001 |
2020-2021:teams:legal_string:jxm2001:树套树 [2020/07/30 14:23] (当前版本) jxm2001 |
||
---|---|---|---|
行 1: | 行 1: | ||
- | ====== 树套树 1 ====== | + | ====== 树套树 ====== |
+ | |||
+ | ===== 树状数组套树状数组 ===== | ||
+ | |||
+ | ==== 简介 ==== | ||
+ | |||
+ | 一般用与维护二维矩阵,码量以及常数小,通常涉及差分。 | ||
+ | |||
+ | ==== 模板题 ==== | ||
+ | |||
+ | [[https://www.luogu.com.cn/problem/P4514|洛谷p4514]] | ||
+ | |||
+ | 维护一个矩阵,支持以下操作: | ||
+ | - 将以 $(r_1,c_1),(r_2,c_2)$ 为顶点的矩阵内全部元素加上 $k$ | ||
+ | - 输出 $(r_1,c_1),(r_2,c_2)$ 为顶点的矩阵内全部元素的和 | ||
+ | |||
+ | 考虑二维差分,设矩阵元素 $a_{x,y}=\sum_{i=1}^x\sum_{j=1}^y b_{i,j}$,则 | ||
+ | |||
+ | \begin{equation}S_{i,j}=\sum_{x=1}^r\sum_{y=1}^c a_{x,y}=\sum_{x=1}^r\sum_{y=1}^c\sum_{i=1}^x\sum_{j=1}^y b_{i,j}=\sum_{i=1}^r\sum_{j=1}^c (r-i+1)(c-j+1)b_{i,j}\end{equation} | ||
+ | |||
+ | 展开得 | ||
+ | |||
+ | \begin{equation}S_{i,j}=(r+1)(c+1)\sum_{i=1}^r\sum_{j=1}^c b_{i,j}-(c+1)\sum_{i=1}^r\sum_{j=1}^c ib_{i,j}-(r+1)\sum_{i=1}^r\sum_{j=1}^c jb_{i,j}+\sum_{i=1}^r\sum_{j=1}^c ijb_{i,j}\end{equation} | ||
+ | |||
+ | 考虑分别维护以下四项 | ||
+ | |||
+ | \begin{equation}\sum_{i=1}^r\sum_{j=1}^c b_{i,j},\sum_{i=1}^r\sum_{j=1}^c ib_{i,j},\sum_{i=1}^r\sum_{j=1}^c jb_{i,j},\sum_{i=1}^r\sum_{j=1}^c ijb_{i,j}\end{equation} | ||
+ | |||
+ | 修改操作变为 $b_{r_1,c_1}+=v,b_{r_2+1,c_1}-=v,b_{r_1,c_2+1}-=v,b_{r_2+1,c_2+1}+=v$。 | ||
+ | |||
+ | 查询操作变为 $S=S_{r_2,c_2}-S_{r_1-1,c_2}-S_{r_2,c_1-1}+S_{r_1-1,c_1-1}$。 | ||
+ | |||
+ | 空间复杂度 $O(n^2)$,时间复杂度 $O(q\log^2 n)$。 | ||
+ | |||
+ | <hidden 查看代码> | ||
+ | <code cpp> | ||
+ | #define lowbit(x) (x)&(-x) | ||
+ | const int MAXN=2050; | ||
+ | struct BIT{ | ||
+ | int a[4][MAXN][MAXN],n,m; | ||
+ | void modify(int r,int c,int v){ | ||
+ | for(int i=r;i<=n;i+=lowbit(i)){ | ||
+ | for(int j=c;j<=m;j+=lowbit(j)){ | ||
+ | a[0][i][j]+=v; | ||
+ | a[1][i][j]+=v*r; | ||
+ | a[2][i][j]+=v*c; | ||
+ | a[3][i][j]+=v*r*c; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | void add(int r1,int c1,int r2,int c2,int v){ | ||
+ | modify(r1,c1,v);modify(r2+1,c1,-v); | ||
+ | modify(r1,c2+1,-v);modify(r2+1,c2+1,v); | ||
+ | } | ||
+ | int pre_sum(int r,int c){ | ||
+ | int ans[4]={0}; | ||
+ | for(int i=r;i;i-=lowbit(i)){ | ||
+ | for(int j=c;j;j-=lowbit(j)){ | ||
+ | _for(k,0,4) | ||
+ | ans[k]+=a[k][i][j]; | ||
+ | } | ||
+ | } | ||
+ | return ans[0]*(r+1)*(c+1)-ans[1]*(c+1)-ans[2]*(r+1)+ans[3]; | ||
+ | } | ||
+ | int query(int r1,int c1,int r2,int c2){ | ||
+ | return pre_sum(r2,c2)-pre_sum(r1-1,c2)-pre_sum(r2,c1-1)+pre_sum(r1-1,c1-1); | ||
+ | } | ||
+ | }tree; | ||
+ | char order[1000]; | ||
+ | int main() | ||
+ | { | ||
+ | scanf("X %d %d\n",&tree.n,&tree.m); | ||
+ | int a,b,c,d,v; | ||
+ | while(~scanf("%s",order)){ | ||
+ | if(order[0]=='L'){ | ||
+ | a=read_int(),b=read_int(),c=read_int(),d=read_int(),v=read_int(); | ||
+ | tree.add(a,b,c,d,v); | ||
+ | } | ||
+ | else{ | ||
+ | a=read_int(),b=read_int(),c=read_int(),d=read_int(); | ||
+ | enter(tree.query(a,b,c,d)); | ||
+ | } | ||
+ | } | ||
+ | return 0; | ||
+ | } | ||
+ | </code> | ||
+ | </hidden> | ||
+ | |||
+ | ===== 线段树套线段树 ===== | ||
+ | |||
+ | ==== 简介 ==== | ||
+ | |||
+ | 一般用于解决树状数组套树状数组无法解决的二维偏序问题,通常涉及权值线段树、动态开点等。 | ||
+ | |||
+ | ==== 模板题 ==== | ||
+ | |||
+ | [[https://www.luogu.com.cn/problem/P3332|洛谷p3332]] | ||
+ | |||
+ | 维护 $n$ 个可重集,支持以下操作: | ||
+ | - 将 $c$ 加入编号为 $[l\sim r]$ 的集合 | ||
+ | - 查询编号为 $[l\sim r]$ 的集合的并集中第 $c$ 大的元素 | ||
+ | |||
+ | 考虑权值线段树套线段树,第一维维护每个数值,第二维维护每个集合在某个数值区间拥有的元素个数。 | ||
+ | |||
+ | 为防止爆内存,第二维线段树需要动态开点,同时考虑线段树标记永久化优化常数。 | ||
+ | |||
+ | 时空间复杂度均为 $O(q\log v\log n)$。 | ||
+ | |||
+ | <hidden 查看代码> | ||
+ | <code cpp> | ||
+ | const int MAXN=(5e4+5)*4,MAXM=40; | ||
+ | struct Node{ | ||
+ | int ch[2],tag; | ||
+ | LL sz; | ||
+ | }node[MAXN*MAXM]; | ||
+ | int lef[MAXN],rig[MAXN],root[MAXN],n,tot; | ||
+ | void build_2D(int k,int L,int R){ | ||
+ | lef[k]=L,rig[k]=R; | ||
+ | if(L==R) | ||
+ | return; | ||
+ | int M=L+R>>1; | ||
+ | build_2D(k<<1,L,M); | ||
+ | build_2D(k<<1|1,M+1,R); | ||
+ | } | ||
+ | void update_1D(int &k,int lef,int rig,int L,int R){ | ||
+ | if(!k)k=++tot; | ||
+ | if(L<=lef&&rig<=R) | ||
+ | return node[k].sz+=rig-lef+1,node[k].tag++,void(); | ||
+ | int mid=lef+rig>>1; | ||
+ | if(mid>=L) | ||
+ | update_1D(node[k].ch[0],lef,mid,L,R); | ||
+ | if(mid<R) | ||
+ | update_1D(node[k].ch[1],mid+1,rig,L,R); | ||
+ | node[k].sz=node[node[k].ch[0]].sz+node[node[k].ch[1]].sz+1LL*(rig-lef+1)*node[k].tag; | ||
+ | } | ||
+ | void update_2D(int L,int R,int v){ | ||
+ | int k=1,mid; | ||
+ | while(lef[k]<rig[k]){ | ||
+ | update_1D(root[k],1,n,L,R); | ||
+ | mid=lef[k]+rig[k]>>1; | ||
+ | k<<=1; | ||
+ | k|=(mid<v); | ||
+ | } | ||
+ | update_1D(root[k],1,n,L,R); | ||
+ | } | ||
+ | LL query_1D(int k,int lef,int rig,int L,int R,int tag){ | ||
+ | if(!k) | ||
+ | return 1LL*(min(rig,R)-max(lef,L)+1)*tag; | ||
+ | if(L<=lef&&rig<=R) | ||
+ | return node[k].sz+1LL*(rig-lef+1)*tag; | ||
+ | int mid=lef+rig>>1; | ||
+ | if(mid>=R) | ||
+ | return query_1D(node[k].ch[0],lef,mid,L,R,tag+node[k].tag); | ||
+ | else if(mid<L) | ||
+ | return query_1D(node[k].ch[1],mid+1,rig,L,R,tag+node[k].tag); | ||
+ | else | ||
+ | return query_1D(node[k].ch[0],lef,mid,L,R,tag+node[k].tag)+query_1D(node[k].ch[1],mid+1,rig,L,R,tag+node[k].tag); | ||
+ | } | ||
+ | int query_2D(int L,int R,LL rk){ | ||
+ | int k=1;LL trk; | ||
+ | rk--; | ||
+ | while(lef[k]<rig[k]){ | ||
+ | trk=query_1D(root[k<<1|1],1,n,L,R,0); | ||
+ | k<<=1; | ||
+ | if(trk<=rk) | ||
+ | rk-=trk; | ||
+ | else | ||
+ | k|=1; | ||
+ | } | ||
+ | return lef[k]; | ||
+ | } | ||
+ | int main() | ||
+ | { | ||
+ | n=read_int(); | ||
+ | build_2D(1,1,n); | ||
+ | int q=read_int(),opt,l,r; | ||
+ | LL c; | ||
+ | while(q--){ | ||
+ | opt=read_int(),l=read_int(),r=read_int(),c=read_LL(); | ||
+ | if(opt&1) | ||
+ | update_2D(l,r,c); | ||
+ | else | ||
+ | enter(query_2D(l,r,c)); | ||
+ | } | ||
+ | return 0; | ||
+ | } | ||
+ | </code> | ||
+ | </hidden> | ||
===== 线段树/树状数组套名次树 ===== | ===== 线段树/树状数组套名次树 ===== | ||
行 26: | 行 213: | ||
<hidden 查看代码> | <hidden 查看代码> | ||
<code cpp> | <code cpp> | ||
- | #include <iostream> | ||
- | #include <cstdio> | ||
- | #include <cstdlib> | ||
- | #include <algorithm> | ||
- | #include <string> | ||
- | #include <sstream> | ||
- | #include <cstring> | ||
- | #include <cctype> | ||
- | #include <cmath> | ||
- | #include <vector> | ||
- | #include <set> | ||
- | #include <map> | ||
- | #include <stack> | ||
- | #include <queue> | ||
- | #include <ctime> | ||
- | #include <cassert> | ||
- | #define _for(i,a,b) for(int i=(a);i<(b);++i) | ||
- | #define _rep(i,a,b) for(int i=(a);i<=(b);++i) | ||
- | #define mem(a,b) memset(a,b,sizeof(a)) | ||
- | using namespace std; | ||
- | typedef long long LL; | ||
- | inline int read_int(){ | ||
- | int t=0;bool sign=false;char c=getchar(); | ||
- | while(!isdigit(c)){sign|=c=='-';c=getchar();} | ||
- | while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();} | ||
- | return sign?-t:t; | ||
- | } | ||
- | inline LL read_LL(){ | ||
- | LL t=0;bool sign=false;char c=getchar(); | ||
- | while(!isdigit(c)){sign|=c=='-';c=getchar();} | ||
- | while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();} | ||
- | return sign?-t:t; | ||
- | } | ||
- | inline char get_char(){ | ||
- | char c=getchar(); | ||
- | while(c==' '||c=='\n'||c=='\r')c=getchar(); | ||
- | return c; | ||
- | } | ||
- | inline void write(LL x){ | ||
- | register char c[21],len=0; | ||
- | if(!x)return putchar('0'),void(); | ||
- | if(x<0)x=-x,putchar('-'); | ||
- | while(x)c[++len]=x%10,x/=10; | ||
- | while(len)putchar(c[len--]+48); | ||
- | } | ||
- | inline void space(LL x){write(x),putchar(' ');} | ||
- | inline void enter(LL x){write(x),putchar('\n');} | ||
const int MAXN=(5e4+5)*4,MAXS=MAXN*20,Inf=0x7fffffff; | const int MAXN=(5e4+5)*4,MAXS=MAXN*20,Inf=0x7fffffff; | ||
template <typename T> | template <typename T> | ||
行 285: | 行 425: | ||
<hidden 查看代码> | <hidden 查看代码> | ||
<code cpp> | <code cpp> | ||
- | #include <iostream> | ||
- | #include <cstdio> | ||
- | #include <cstdlib> | ||
- | #include <algorithm> | ||
- | #include <string> | ||
- | #include <sstream> | ||
- | #include <cstring> | ||
- | #include <cctype> | ||
- | #include <cmath> | ||
- | #include <vector> | ||
- | #include <set> | ||
- | #include <map> | ||
- | #include <stack> | ||
- | #include <queue> | ||
- | #include <ctime> | ||
- | #include <cassert> | ||
- | #define _for(i,a,b) for(int i=(a);i<(b);++i) | ||
- | #define _rep(i,a,b) for(int i=(a);i<=(b);++i) | ||
- | #define mem(a,b) memset(a,b,sizeof(a)) | ||
- | using namespace std; | ||
- | typedef long long LL; | ||
- | inline int read_int(){ | ||
- | int t=0;bool sign=false;char c=getchar(); | ||
- | while(!isdigit(c)){sign|=c=='-';c=getchar();} | ||
- | while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();} | ||
- | return sign?-t:t; | ||
- | } | ||
- | inline LL read_LL(){ | ||
- | LL t=0;bool sign=false;char c=getchar(); | ||
- | while(!isdigit(c)){sign|=c=='-';c=getchar();} | ||
- | while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();} | ||
- | return sign?-t:t; | ||
- | } | ||
- | inline char get_char(){ | ||
- | char c=getchar(); | ||
- | while(c==' '||c=='\n'||c=='\r')c=getchar(); | ||
- | return c; | ||
- | } | ||
- | inline void write(LL x){ | ||
- | register char c[21],len=0; | ||
- | if(!x)return putchar('0'),void(); | ||
- | if(x<0)x=-x,putchar('-'); | ||
- | while(x)c[++len]=x%10,x/=10; | ||
- | while(len)putchar(c[len--]+48); | ||
- | } | ||
- | inline void space(LL x){write(x),putchar(' ');} | ||
- | inline void enter(LL x){write(x),putchar('\n');} | ||
const int MAXN=5e4+5,MAXS=MAXN*20,Inf=0x7fffffff; | const int MAXN=5e4+5,MAXS=MAXN*20,Inf=0x7fffffff; | ||
template <typename T> | template <typename T> | ||
行 548: | 行 641: | ||
</hidden> | </hidden> | ||
- | === 动态开点权值线段树套名次树版本 === | + | === 权值线段树套名次树版本 === |
转换一下思路,考虑外层维护权值,内层维护位置。那么 $\text{rank}$ 操作查询 $0\sim v-1$ 区间的满足条件的点的个数。 | 转换一下思路,考虑外层维护权值,内层维护位置。那么 $\text{rank}$ 操作查询 $0\sim v-1$ 区间的满足条件的点的个数。 | ||
行 558: | 行 651: | ||
<hidden 查看代码> | <hidden 查看代码> | ||
<code cpp> | <code cpp> | ||
- | #include <iostream> | ||
- | #include <cstdio> | ||
- | #include <cstdlib> | ||
- | #include <algorithm> | ||
- | #include <string> | ||
- | #include <sstream> | ||
- | #include <cstring> | ||
- | #include <cctype> | ||
- | #include <cmath> | ||
- | #include <vector> | ||
- | #include <set> | ||
- | #include <map> | ||
- | #include <stack> | ||
- | #include <queue> | ||
- | #include <ctime> | ||
- | #include <cassert> | ||
- | #define _for(i,a,b) for(int i=(a);i<(b);++i) | ||
- | #define _rep(i,a,b) for(int i=(a);i<=(b);++i) | ||
- | #define mem(a,b) memset(a,b,sizeof(a)) | ||
- | using namespace std; | ||
- | typedef long long LL; | ||
- | inline int read_int(){ | ||
- | int t=0;bool sign=false;char c=getchar(); | ||
- | while(!isdigit(c)){sign|=c=='-';c=getchar();} | ||
- | while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();} | ||
- | return sign?-t:t; | ||
- | } | ||
- | inline LL read_LL(){ | ||
- | LL t=0;bool sign=false;char c=getchar(); | ||
- | while(!isdigit(c)){sign|=c=='-';c=getchar();} | ||
- | while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();} | ||
- | return sign?-t:t; | ||
- | } | ||
- | inline char get_char(){ | ||
- | char c=getchar(); | ||
- | while(c==' '||c=='\n'||c=='\r')c=getchar(); | ||
- | return c; | ||
- | } | ||
- | inline void write(LL x){ | ||
- | register char c[21],len=0; | ||
- | if(!x)return putchar('0'),void(); | ||
- | if(x<0)x=-x,putchar('-'); | ||
- | while(x)c[++len]=x%10,x/=10; | ||
- | while(len)putchar(c[len--]+48); | ||
- | } | ||
- | inline void space(LL x){write(x),putchar(' ');} | ||
- | inline void enter(LL x){write(x),putchar('\n');} | ||
const int MAXN=5e4+5,MAXS=MAXN*40,Inf=0x7fffffff; | const int MAXN=5e4+5,MAXS=MAXN*40,Inf=0x7fffffff; | ||
template <typename T> | template <typename T> | ||
行 841: | 行 887: | ||
} | } | ||
return 0; | return 0; | ||
+ | } | ||
+ | </code> | ||
+ | </hidden> | ||
+ | |||
+ | ===== 树状数组套权值线段树 ===== | ||
+ | |||
+ | ==== 简介 ==== | ||
+ | |||
+ | 功能类似线段树/树状数组套名次树。 | ||
+ | |||
+ | 其实权值线段树和名次树在功能上有许多相同点,权值线段树码量相对较少,但空间复杂度多一个 $O(\log v)$。 | ||
+ | |||
+ | ==== 模板题 ==== | ||
+ | |||
+ | [[https://www.luogu.com.cn/problem/P3759|洛谷p3759]] | ||
+ | |||
+ | 该题等价于维护一个数组,支持一下操作: | ||
+ | |||
+ | - 修改某个点的点权 | ||
+ | - 询问满足位置在 $[l_1,r_1]$ 且权值在 $[l_2,r_2]$ 范围内的点个数和点权和。 | ||
+ | |||
+ | 树状数组的每个节点的权值线段树维护区间 $[x-\text{lowbit}(x)+1,x]$ 的权值分布,每个权值记录点个数和点权和。 | ||
+ | |||
+ | 空间复杂度 $O(n\log n\log v)$,单次操作时间复杂度 $O(\log n\log v)$。 | ||
+ | |||
+ | <hidden 查看代码> | ||
+ | <code cpp> | ||
+ | const int MAXN=5e4+5,MAXM=400,mod=1e9+7; | ||
+ | struct Node{ | ||
+ | int ch[2],sz,sum; | ||
+ | }node[MAXN*MAXM]; | ||
+ | struct Ans{ | ||
+ | int sz,sum; | ||
+ | Ans operator + (const Ans &b){ | ||
+ | Ans c; | ||
+ | c.sz=sz+b.sz; | ||
+ | c.sum=sum+b.sum; | ||
+ | if(c.sum>=mod)c.sum-=mod; | ||
+ | return c; | ||
+ | } | ||
+ | Ans operator - (const Ans &b){ | ||
+ | Ans c; | ||
+ | c.sz=sz-b.sz; | ||
+ | c.sum=sum-b.sum; | ||
+ | if(c.sum<0)c.sum+=mod; | ||
+ | return c; | ||
+ | } | ||
+ | void operator += (const Ans &b){ | ||
+ | sz+=b.sz; | ||
+ | sum+=b.sum; | ||
+ | if(sum>=mod)sum-=mod; | ||
+ | } | ||
+ | void operator -= (const Ans &b){ | ||
+ | sz-=b.sz; | ||
+ | sum-=b.sum; | ||
+ | if(sum<0)sum+=mod; | ||
+ | } | ||
+ | Ans(int sz=0,int sum=0):sz(sz),sum(sum){} | ||
+ | }; | ||
+ | #define lowbit(x) (x)&(-x) | ||
+ | int n,root[MAXN],tot; | ||
+ | int a[MAXN],b[MAXN],c[MAXN],d[MAXN]; | ||
+ | void add(int pos,int v){ | ||
+ | while(pos<=n){ | ||
+ | c[pos]+=v; | ||
+ | if(c[pos]>=mod) | ||
+ | c[pos]-=mod; | ||
+ | d[pos]++; | ||
+ | pos+=lowbit(pos); | ||
+ | } | ||
+ | } | ||
+ | Ans sum(int pos){ | ||
+ | int s1=0,s2=0; | ||
+ | while(pos){ | ||
+ | s2+=c[pos]; | ||
+ | if(s2>=mod) | ||
+ | s2-=mod; | ||
+ | s1+=d[pos]; | ||
+ | pos-=lowbit(pos); | ||
+ | } | ||
+ | return Ans(s1,s2); | ||
+ | } | ||
+ | void update_1D(int &k,int lef,int rig,int pos,int v1,int v2){ | ||
+ | if(!k)k=++tot; | ||
+ | node[k].sz+=v2,node[k].sum=(node[k].sum+v1)%mod; | ||
+ | if(lef==rig) | ||
+ | return; | ||
+ | int mid=lef+rig>>1; | ||
+ | if(mid>=pos) | ||
+ | update_1D(node[k].ch[0],lef,mid,pos,v1,v2); | ||
+ | else | ||
+ | update_1D(node[k].ch[1],mid+1,rig,pos,v1,v2); | ||
+ | } | ||
+ | void update_2D(int k,int pos,int v1,int v2){ | ||
+ | while(k<=n){ | ||
+ | update_1D(root[k],1,n,pos,v1,v2); | ||
+ | k+=lowbit(k); | ||
+ | } | ||
+ | } | ||
+ | Ans query_1D(int k,int lef,int rig,int L,int R){ | ||
+ | if(!k) | ||
+ | return Ans(0,0); | ||
+ | if(L<=lef&&rig<=R) | ||
+ | return Ans(node[k].sz,node[k].sum); | ||
+ | int mid=lef+rig>>1; | ||
+ | if(mid>=R) | ||
+ | return query_1D(node[k].ch[0],lef,mid,L,R); | ||
+ | else if(mid<L) | ||
+ | return query_1D(node[k].ch[1],mid+1,rig,L,R); | ||
+ | return query_1D(node[k].ch[0],lef,mid,L,R)+query_1D(node[k].ch[1],mid+1,rig,L,R); | ||
+ | } | ||
+ | Ans query_2D(int L,int R,int ql,int qr){ | ||
+ | if(ql>qr) | ||
+ | return Ans(0,0); | ||
+ | int pos1=L-1,pos2=R; | ||
+ | Ans re=Ans(0,0); | ||
+ | while(pos1){ | ||
+ | re-=query_1D(root[pos1],1,n,ql,qr); | ||
+ | pos1-=lowbit(pos1); | ||
+ | } | ||
+ | while(pos2){ | ||
+ | re+=query_1D(root[pos2],1,n,ql,qr); | ||
+ | pos2-=lowbit(pos2); | ||
+ | } | ||
+ | return re; | ||
+ | } | ||
+ | int main() | ||
+ | { | ||
+ | n=read_int(); | ||
+ | int q=read_int(),lef,rig; | ||
+ | LL ans=0;Ans temp; | ||
+ | _rep(i,1,n) | ||
+ | a[i]=read_int(),b[i]=read_int(); | ||
+ | for(int i=n;i;i--){ | ||
+ | add(a[i],b[i]); | ||
+ | temp=sum(a[i]-1); | ||
+ | ans=(ans+temp.sum+1LL*b[i]*temp.sz)%mod; | ||
+ | update_2D(i,a[i],b[i],1); | ||
+ | } | ||
+ | while(q--){ | ||
+ | lef=read_int(); | ||
+ | rig=read_int(); | ||
+ | if(lef==rig){ | ||
+ | enter(ans); | ||
+ | continue; | ||
+ | } | ||
+ | if(lef>rig) | ||
+ | swap(lef,rig); | ||
+ | temp=query_2D(lef+1,rig-1,a[lef]+1,n)-query_2D(lef+1,rig-1,1,a[lef]-1); | ||
+ | ans=(ans+temp.sum+1LL*b[lef]*temp.sz)%mod; | ||
+ | temp=query_2D(lef+1,rig-1,1,a[rig]-1)-query_2D(lef+1,rig-1,a[rig]+1,n); | ||
+ | ans=(ans+temp.sum+1LL*b[rig]*temp.sz)%mod; | ||
+ | if(a[lef]<a[rig]) | ||
+ | ans=(ans+b[lef]+b[rig])%mod; | ||
+ | else | ||
+ | ans=(ans-b[lef]-b[rig])%mod; | ||
+ | enter((ans+mod)%mod); | ||
+ | update_2D(lef,a[lef],-b[lef],-1);update_2D(rig,a[rig],-b[rig],-1); | ||
+ | swap(a[lef],a[rig]);swap(b[lef],b[rig]); | ||
+ | update_2D(lef,a[lef],b[lef],1);update_2D(rig,a[rig],b[rig],1); | ||
+ | } | ||
+ | return 0; | ||
} | } | ||
</code> | </code> | ||
</hidden> | </hidden> | ||