这里会显示出您选择的修订版和当前版本之间的差别。
后一修订版 | 前一修订版 | ||
2020-2021:teams:legal_string:lgwza:杜教筛 [2020/09/07 11:10] lgwza 创建 |
2020-2021:teams:legal_string:lgwza:杜教筛 [2020/09/07 12:29] (当前版本) lgwza |
||
---|---|---|---|
行 51: | 行 51: | ||
g(1)S(n)=\sum_{i=1}^n(f*g)(i)-\sum_{i=2}^ng(i)S\left(\left\lfloor\frac n i\right\rfloor\right) | g(1)S(n)=\sum_{i=1}^n(f*g)(i)-\sum_{i=2}^ng(i)S\left(\left\lfloor\frac n i\right\rfloor\right) | ||
$$ 那么假如我们可以快速对 $\sum_{i=1}^n(f*g)(i)$ 求和,并用数论分块求解 $\sum_{i=2}^ng(i)S\left(\left\lfloor\frac n i\right\rfloor\right)$,就可以在较短时间内求得 $g(1)S(n)$。 | $$ 那么假如我们可以快速对 $\sum_{i=1}^n(f*g)(i)$ 求和,并用数论分块求解 $\sum_{i=2}^ng(i)S\left(\left\lfloor\frac n i\right\rfloor\right)$,就可以在较短时间内求得 $g(1)S(n)$。 | ||
+ | |||
+ | ===== 问题一 ===== | ||
+ | |||
+ | > [[https://www.luogu.com.cn/problem/P4213|P4213【模板】杜教筛(Sum)]] | ||
+ | > | ||
+ | > 题目大意:求 $S_1(n)=\sum_{i=1}^n\mu(i)$ 和 $S_2(n)=\sum_{i=1}^n\varphi(i)$ 的值,$n\le 2^{31}-1$。 | ||
+ | |||
+ | ==== 莫比乌斯函数前缀和 ==== | ||
+ | |||
+ | 由 **狄利克雷卷积**,我们知道: | ||
+ | |||
+ | $\because\varepsilon=\mu*1(\varepsilon(n)=[n=1])$ | ||
+ | |||
+ | $\therefore\varepsilon(n)=\sum_{d\mid n}\mu(d)$ | ||
+ | |||
+ | $S_1(n)=\sum_{i=1}^n\varepsilon(i)-\sum_{i=2}^nS_1\left(\left\lfloor\frac n i\right\rfloor\right)$ | ||
+ | |||
+ | $=1-\sum_{i=2}^nS_1\left(\left\lfloor\frac n i\right\rfloor\right)$ | ||
+ | |||
+ | 观察到 $\lfloor\frac n i\rfloor$ 最多只有 $O(\sqrt n)$ 种取值,我们就可以应用 **整除分块**(或称数论分块)来计算每一项的值了。 | ||
+ | |||
+ | 直接计算的时间复杂度为 $O(n^{\frac 3 4})$。考虑先线性筛预处理出前 $n^{\frac 2 3}$ 项,剩余部分的时间复杂度为 $$ | ||
+ | O(\int_0^{n^{\frac 1 3}}\sqrt{\frac n x}~dx)=O(n^{\frac 2 3}) | ||
+ | $$ 对于较大的值,需要用 ''%%map%%'' 存下其对应的值,方便以后使用时直接使用之前计算的结果。 | ||
+ | |||
+ | ==== 欧拉函数前缀和 ==== | ||
+ | |||
+ | 当然也可以用杜教筛求出 $\varphi(x)$ 的前缀和,但是更好的方法是应用莫比乌斯反演: | ||
+ | |||
+ | $\sum_{i=1}^n\sum_{j=1}^n1[\gcd(i,j)=1]=\sum_{i=1}^n\sum_{j=1}^n\sum_{d\mid i,d\mid j}\mu(d)\\ =\sum_{d=1}^n\mu(d)\lfloor\frac n d\rfloor^2$ | ||
+ | |||
+ | 观察到,只需求出莫比乌斯函数的前缀和,就可以快速计算出欧拉函数的前缀和了。时间复杂度 $O(n^{\frac 2 3})$。 | ||
+ | |||
+ | === 使用杜教筛求解 === | ||
+ | |||
+ | 求 $S(i)=\sum_{i=1}^n\varphi(i)$。 | ||
+ | |||
+ | 同样地,$\varphi*1=Id$ $$ | ||
+ | \begin{split} &\sum_{i=1}^n(\varphi\ast 1)(i)=\sum_{i=1}^n1\cdot S\left(\left\lfloor\frac{n}{i}\right\rfloor\right)\\ &\sum_{i=1}^nID(i)=\sum_{i=1}^n1\cdot S\left(\left\lfloor\frac{n}{i}\right\rfloor\right)\\ &\frac{1}{2}n(n+1)=\sum_{i=1}^nS\left(\left\lfloor\frac{n}{i}\right\rfloor\right)\\ &S(n)=\frac{1}{2}n(n+1)-\sum_{i=2}^nS\left(\left\lfloor\frac{n}{i}\right\rfloor\right)\\ \end{split} | ||
+ | $$ 参考代码: | ||
+ | |||
+ | <hidden> | ||
+ | <code cpp> | ||
+ | #include <algorithm> | ||
+ | #include <cstdio> | ||
+ | #include <cstring> | ||
+ | #include <map> | ||
+ | using namespace std; | ||
+ | const int maxn = 2000010; | ||
+ | typedef long long ll; | ||
+ | ll T, n, pri[maxn], cur, mu[maxn], sum_mu[maxn]; | ||
+ | bool vis[maxn]; | ||
+ | map<ll, ll> mp_mu; | ||
+ | ll S_mu(ll x) { | ||
+ | if (x < maxn) return sum_mu[x]; | ||
+ | if (mp_mu[x]) return mp_mu[x]; | ||
+ | ll ret = 1ll; | ||
+ | for (ll i = 2, j; i <= x; i = j + 1) { | ||
+ | j = x / (x / i); | ||
+ | ret -= S_mu(x / i) * (j - i + 1); | ||
+ | } | ||
+ | return mp_mu[x] = ret; | ||
+ | } | ||
+ | ll S_phi(ll x) { | ||
+ | ll ret = 0ll; | ||
+ | for (ll i = 1, j; i <= x; i = j + 1) { | ||
+ | j = x / (x / i); | ||
+ | ret += (S_mu(j) - S_mu(i - 1)) * (x / i) * (x / i); | ||
+ | } | ||
+ | return ((ret - 1) >> 1) + 1; | ||
+ | } | ||
+ | int main() { | ||
+ | scanf("%lld", &T); | ||
+ | mu[1] = 1; | ||
+ | for (int i = 2; i < maxn; i++) { | ||
+ | if (!vis[i]) { | ||
+ | pri[++cur] = i; | ||
+ | mu[i] = -1; | ||
+ | } | ||
+ | for (int j = 1; j <= cur && i * pri[j] < maxn; j++) { | ||
+ | vis[i * pri[j]] = true; | ||
+ | if (i % pri[j]) | ||
+ | mu[i * pri[j]] = -mu[i]; | ||
+ | else { | ||
+ | mu[i * pri[j]] = 0; | ||
+ | break; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | for (int i = 1; i < maxn; i++) sum_mu[i] = sum_mu[i - 1] + mu[i]; | ||
+ | while (T--) { | ||
+ | scanf("%lld", &n); | ||
+ | printf("%lld %lld\n", S_phi(n), S_mu(n)); | ||
+ | } | ||
+ | return 0; | ||
+ | } | ||
+ | </code> | ||
+ | </hidden> | ||
+ | |||
+ | ===== 问题二 ===== | ||
+ | |||
+ | > [[https://www.luogu.com.cn/problem/P3768|「LuoguP3768」简单的数学题]] | ||
+ | > | ||
+ | > 题目大意:求 $ | ||
+ | > \sum_{i=1}^n\sum_{j=1}^ni\cdot j\cdot\gcd(i,j)\pmod{p} | ||
+ | > $ ,其中 $n\le 10^{10},5\times 10^8\le p\le 1.1\times 10^9$,$p$ 是质数。 | ||
+ | |||
+ | 利用 $\varphi * 1=Id$ 做莫比乌斯反演化为 $$ | ||
+ | \sum_{d=1}^nF^2\left(\left\lfloor\frac n d\right\rfloor\right)\cdot d^2\varphi(d)\left(F(n)=\frac 1 2n(n+1)\right) | ||
+ | $$ 对 $\sum_{d=1}^nF\left(\left\lfloor\frac n d\right\rfloor\right)^2$ 做数论分块,$d^2\varphi(d)$ 的前缀和用杜教筛处理: $$ | ||
+ | f(n)=n^2\varphi(n)=(Id^2\varphi)(n)\\ | ||
+ | S(n)=\sum_{i=1}^nf(i)=\sum_{i=1}^n(Id^2\varphi)(i) | ||
+ | $$ 需要构造积性函数 $g$,使得 $f*g$ 和 $g$ 能快速求和。 | ||
+ | |||
+ | 单纯的 $\varphi$ 的前缀和可以用 $\varphi*1$ 的杜教筛处理,但是这里的 $f$ 多了一个 $Id^2$,那么我们就卷一个 $Id^2$ 上去,让它变成常数: $$ | ||
+ | S(n)=\sum_{i=1}^n\left((ID^2\varphi)\ast ID^2\right)(i)-\sum_{i=2}^nID^2(i)S\left(\left\lfloor\frac{n}{i}\right\rfloor\right) | ||
+ | $$ 化一下卷积: $$ | ||
+ | \begin{split} &(ID^2\varphi)\ast ID^2)(i)\\ =&\sum_{d \mid i}(ID^2\varphi)(d)ID^2\left(\frac{i}{d}\right)\\ =&\sum_{d \mid i}d^2\varphi(d)\left(\frac{i}{d}\right)^2\\ =&\sum_{d \mid i}i^2\varphi(d)=i^2\sum_{d \mid i}\varphi(d)\\ =&i^2(\varphi\ast1)(i)=i^3 \end{split} | ||
+ | $$ 再化一下 $S(n)$: $$ | ||
+ | \begin{split} S(n)&=\sum_{i=1}^n\left((ID^2\varphi)\ast ID^2\right)(i)-\sum_{i=2}^nID^2(i)S\left(\left\lfloor\frac{n}{i}\right\rfloor\right)\\ &=\sum_{i=1}^ni^3-\sum_{i=2}^ni^2S\left(\left\lfloor\frac{n}{i}\right\rfloor\right)\\ &=\left(\frac{1}{2}n(n+1)\right)^2-\sum_{i=2}^ni^2S\left(\left\lfloor\frac{n}{i}\right\rfloor\right)\\ \end{split} | ||
+ | $$ 分块求解即可: | ||
+ | |||
+ | 参考代码: | ||
+ | |||
+ | <hidden> | ||
+ | <code cpp> | ||
+ | #include <cmath> | ||
+ | #include <cstdio> | ||
+ | #include <map> | ||
+ | using namespace std; | ||
+ | const int N = 5e6, NP = 5e6, SZ = N; | ||
+ | long long n, P, inv2, inv6, s[N]; | ||
+ | int phi[N], p[NP], cnt, pn; | ||
+ | bool bp[N]; | ||
+ | map<long long, long long> s_map; | ||
+ | long long ksm(long long a, long long m) { // 求逆元用 | ||
+ | long long res = 1; | ||
+ | while (m) { | ||
+ | if (m & 1) res = res * a % P; | ||
+ | a = a * a % P, m >>= 1; | ||
+ | } | ||
+ | return res; | ||
+ | } | ||
+ | void prime_work(int k) { // 线性筛 phi,s | ||
+ | bp[0] = bp[1] = 1, phi[1] = 1; | ||
+ | for (int i = 2; i <= k; i++) { | ||
+ | if (!bp[i]) p[++cnt] = i, phi[i] = i - 1; | ||
+ | for (int j = 1; j <= cnt && i * p[j] <= k; j++) { | ||
+ | bp[i * p[j]] = 1; | ||
+ | if (i % p[j] == 0) { | ||
+ | phi[i * p[j]] = phi[i] * p[j]; | ||
+ | break; | ||
+ | } else | ||
+ | phi[i * p[j]] = phi[i] * phi[p[j]]; | ||
+ | } | ||
+ | } | ||
+ | for (int i = 1; i <= k; i++) | ||
+ | s[i] = (1ll * i * i % P * phi[i] % P + s[i - 1]) % P; | ||
+ | } | ||
+ | long long s3(long long k) { | ||
+ | return k %= P, (k * (k + 1) / 2) % P * ((k * (k + 1) / 2) % P) % P; | ||
+ | } // 立方和 | ||
+ | long long s2(long long k) { | ||
+ | return k %= P, k * (k + 1) % P * (k * 2 + 1) % P * inv6 % P; | ||
+ | } // 平方和 | ||
+ | long long calc(long long k) { // 计算 S(k) | ||
+ | if (k <= pn) return s[k]; | ||
+ | if (s_map[k]) return s_map[k]; // 对于超过 pn 的用 map 离散存储 | ||
+ | long long res = s3(k), pre = 1, cur; | ||
+ | for (long long i = 2, j; i <= k; i = j + 1) | ||
+ | j = k / (k / i), cur = s2(j), | ||
+ | res = (res - calc(k / i) * (cur - pre) % P) % P, pre = cur; | ||
+ | return s_map[k] = (res + P) % P; | ||
+ | } | ||
+ | long long solve() { | ||
+ | long long res = 0, pre = 0, cur; | ||
+ | for (long long i = 1, j; i <= n; i = j + 1) | ||
+ | j = n / (n / i), cur = calc(j), | ||
+ | res = (res + (s3(n / i) * (cur - pre)) % P) % P, pre = cur; | ||
+ | return (res + P) % P; | ||
+ | } | ||
+ | int main() { | ||
+ | scanf("%lld%lld", &P, &n); | ||
+ | inv2 = ksm(2, P - 2), inv6 = ksm(6, P - 2); | ||
+ | pn = (long long)pow(n, 0.666667); // n^(2/3) | ||
+ | prime_work(pn); | ||
+ | printf("%lld", solve()); | ||
+ | return 0; | ||
+ | } // 不要为了省什么内存把数组开小...... 卡了好几次 80 | ||
+ | </code> | ||
+ | </hidden> | ||
+ | |||
+ | ===== 参考链接 ===== | ||
+ | |||
+ | [[https://oi-wiki.org/math/du/|OI Wiki]] |