Warning: session_start(): open(/tmp/sess_37efcb740be8390775306ed307821242, O_RDWR) failed: No space left on device (28) in /data/wiki/inc/init.php on line 239

Warning: session_start(): Failed to read session data: files (path: ) in /data/wiki/inc/init.php on line 239

Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/auth.php on line 430
Writing /data/wiki/data/cache/d/de2edb2fcb553ea79b79c722a4e13dbc.captchaip failed

Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/actions.php on line 38

Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/lib/tpl/dokuwiki/main.php on line 12
2020-2021:teams:manespace:牛客多校第一场 [CVBB ACM Team]

用户工具

站点工具


2020-2021:teams:manespace:牛客多校第一场

到此差别页面的链接

两侧同时换到之前的修订记录 前一修订版
后一修订版
前一修订版
2020-2021:teams:manespace:牛客多校第一场 [2020/07/16 15:40]
quantumbolt
2020-2021:teams:manespace:牛客多校第一场 [2020/07/16 15:56] (当前版本)
quantumbolt
行 3: 行 3:
  
 **本地写完就上传,你看到这句话就知道我还没写完。。。** **本地写完就上传,你看到这句话就知道我还没写完。。。**
 +
 **签到题:F,​J** **签到题:F,​J**
 +
 链接:https://​ac.nowcoder.com/​acm/​contest/​5666 链接:https://​ac.nowcoder.com/​acm/​contest/​5666
  
行 53: 行 55:
 ===== J Easy Integration ===== ===== J Easy Integration =====
  
-  ​* 题意: +   * 题意:给你一个$n$,​并记积分$\int_{0}^{1}\left(x-x^{2}\right)^{n} \mathrm{d} x$值为$\frac{p}{q}$,​求$\left(p \cdot q^{-1}\right) \bmod 998244353$的值 
-  * 题解:+   ​* 题解:积分直接积出来发现 $\int_{0}^{1}\left(x-x^{2}\right)^{n} d x=\frac{\Gamma(n+1)^{2}}{\Gamma(2 n+2)}$ 而$\frac{\Gamma(n+1)^{2}}{\Gamma(2 n+2)} = \frac{2(n+1)(n !)^{2}}{(2(n+1)) !}$。。。说实话我们组是找规律找的,当时积分不会算。。。 
 + 
 +^n                                                  ^1            ^2             ​^3 ​            ​^4 ​             ^5               ^ 
 +|$\int_{0}^{1}\left(x-x^{2}\right)^{n} \mathrm{d} x$|$\frac{1}{6}$|$\frac{1}{30}$|$\frac{1}{40}$|$\frac{1}{630}$|$\frac{1}{2772}$| 
 + 
 +而知道规律后就简单了由下面这个公式 $(\frac{p}{q}) \bmod k = \left(p \cdot q^{-1}\right) \bmod k = p\cdot q^{k-2} \bmod k$ 就直接算就可以了,这题也算签到题
2020-2021/teams/manespace/牛客多校第一场.1594885202.txt.gz · 最后更改: 2020/07/16 15:40 由 quantumbolt