两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
2020-2021:teams:mian:hdu_training:2016_multi-university_training_contest_1 [2020/05/24 23:10] withinlover [题意] |
2020-2021:teams:mian:hdu_training:2016_multi-university_training_contest_1 [2020/07/05 11:33] (当前版本) grapelemonade ↷ 页面2020-2021:teams:mian:hdutraining:2016_multi-university_training_contest_1被移动至2020-2021:teams:mian:hdu_training:2016_multi-university_training_contest_1 |
||
---|---|---|---|
行 16: | 行 16: | ||
* Solved 6 out of 11 problems | * Solved 6 out of 11 problems | ||
* Rank 27/532 in official records | * Rank 27/532 in official records | ||
- | * Solved 6 out of 11 afterwards | + | * Solved 8 out of 11 afterwards |
===== Virtual Participation ===== | ===== Virtual Participation ===== | ||
行 169: | 行 169: | ||
===== C: Game ===== | ===== C: Game ===== | ||
+ | * Idea by **//Gary//** | ||
+ | * Debug by **//Gary,Pantw//** | ||
+ | * Code by **//Gary//** | ||
==== 题意 ==== | ==== 题意 ==== | ||
+ | |||
+ | $n\times m$方格中有一些守卫,保证一个守卫同行同列以及以它为中心的九宫格内没有其他守卫,任意选方格中没有守卫的两点,求两点最短距离的期望 | ||
+ | |||
+ | $1\le n,m\le1000$ | ||
==== 解法 ==== | ==== 解法 ==== | ||
+ | 简单画图可以发现没有守卫时的最短距离即为曼哈顿距离,当被守卫隔开时最短距离即为曼哈顿距离+2 | ||
+ | |||
+ | 因而考虑将两种情况分开求解,先求的所有点对的曼哈顿距离,再求出隔开的点对额外的贡献,$\rm Ans=\frac{\sum dis}{\sum_{x,y\in没有守卫的点}1}$ | ||
+ | |||
+ | 曼哈顿距离可以通过遍历每行和每列来求解,如对于第i列,经过第i列的点对为$sum_{i左侧}\times sum_{i右侧}$,每一个点对都会对曼哈顿距离贡献1,求前缀和后扫描每行每列即可 | ||
+ | |||
+ | 对于守卫隔开的贡献,发现只有连续单调的守卫两边的点对会造成贡献,因为守卫个数极少,对每个守卫$O(n)$扫描来维护最长的连续单调守卫造成的贡献即可 | ||
+ | |||
+ | {{:2020-2021:teams:mian:hdutraining:4.png?400|}} | ||
===== D: GCD ===== | ===== D: GCD ===== | ||
行 192: | 行 208: | ||
===== E: Necklace ===== | ===== E: Necklace ===== | ||
+ | |||
+ | * Idea by **//Withinlover//** | ||
+ | * Code&Debug by **//Gary//** | ||
==== 题意 ==== | ==== 题意 ==== | ||
+ | |||
+ | 给标号的$n$个阴宝石和$n$阳宝石,相间放置围成圆,相邻的一对阴阳宝石匹配(仅能匹配一次)后可以产生价值,但有$m$对阴阳宝石不能产生价值,它们会变得暗淡,问暗淡的阴宝石最少为多少 | ||
+ | |||
+ | $0\le n\le 10,0\le m\le n\times n$ | ||
==== 解法 ==== | ==== 解法 ==== | ||
+ | |||
+ | 发现$n$较小,我们可以固定阳宝石,枚举阴宝石的排列,对每一种情况进行二分图匹配求得最大匹配$\rm Ans_i$,答案即为$n-\max\{\rm Ans_i\}$ | ||
+ | |||
+ | 需要注意由于是圆排列,枚举排列时固定一位只需要枚举剩余n-1位即可 | ||
===== F: PowMod ===== | ===== F: PowMod ===== | ||
行 240: | 行 267: | ||
选择两条对角线本质上并无区别,只是增加计数难度。 | 选择两条对角线本质上并无区别,只是增加计数难度。 | ||
- | 每一个位于 $(i, j)$ 的约束条件,本质上是固定了第 $i$ 行所有的竖边和第 $j$ 列所有的横边。 | + | 每一个位于 $(i, j)$ 的约束条件,本质上是固定了第 $i$ 行所有的竖边和第 $j$ 列所有的横边。如下图: |
+ | |||
+ | {{ :2020-2021:teams:mian:hdutraining:3.jpg?nolink&400 |}} | ||
建二分图,将每一行的竖边视为一个点,每一列的横边视为一个点。则左侧有 $n$ 个点,右侧有 $m$ 个点,每一个约束条件视为从左到右的一条连边。则原问题转化为 $(n + m)$ 个点的联通图计数问题。但是要注意由于可以在两条对角线中任意选择,每条边的贡献为 $2$。 | 建二分图,将每一行的竖边视为一个点,每一列的横边视为一个点。则左侧有 $n$ 个点,右侧有 $m$ 个点,每一个约束条件视为从左到右的一条连边。则原问题转化为 $(n + m)$ 个点的联通图计数问题。但是要注意由于可以在两条对角线中任意选择,每条边的贡献为 $2$。 | ||
行 274: | 行 303: | ||
多组数据 | 多组数据 | ||
- | 给定空间中四点坐标,求围城的四面体的内接球半径以及球心坐标。 | + | 给定空间中四点坐标,求组成的四面体的内接球半径以及球心坐标。 |
==== 解法 ==== | ==== 解法 ==== |