这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
2020-2021:teams:namespace:牛客多校第二场 [2020/07/16 10:01] great_designer [牛客多校第二场] |
2020-2021:teams:namespace:牛客多校第二场 [2020/07/17 12:24] (当前版本) great_designer [E] |
||
---|---|---|---|
行 5: | 行 5: | ||
=====D===== | =====D===== | ||
- | 唯一一道水题。 | + | 唯一一道过了的水题。 |
<hidden> | <hidden> | ||
行 26: | 行 26: | ||
{ | { | ||
solve(); | solve(); | ||
- | printf("%d", ans); | + | printf("%d",ans); |
return 0; | return 0; | ||
} | } | ||
行 32: | 行 32: | ||
</code> | </code> | ||
</hidden> | </hidden> | ||
+ | |||
+ | =====F===== | ||
+ | |||
+ | 以下是补题。 | ||
+ | |||
+ | 这个题TLE掉了。原因是单调队列不熟练,还需要一个记忆化的小技巧。 | ||
+ | |||
+ | 记忆化技巧代码加单调队列: | ||
+ | |||
+ | <hidden> | ||
+ | <code C> | ||
+ | |||
+ | #include<stdio.h> | ||
+ | |||
+ | short Gcd[5010][5010]; | ||
+ | short head,tail,q[5010]; | ||
+ | |||
+ | int A[5010][5010],b[5010][5010]; | ||
+ | |||
+ | int main() | ||
+ | { | ||
+ | int n,m,k; | ||
+ | scanf("%d%d%d",&n,&m,&k); | ||
+ | long long res=0; | ||
+ | int i; | ||
+ | for(i=1;i<=n;i++) | ||
+ | { | ||
+ | head=1,tail=0; | ||
+ | int j; | ||
+ | for(j=1;j<=m;j++) | ||
+ | { | ||
+ | if(!Gcd[i][j]) | ||
+ | { | ||
+ | int h; | ||
+ | for(h=1;h*i<=n&&h*j<=m;h++) | ||
+ | { | ||
+ | Gcd[h*i][h*j]=h; | ||
+ | A[h*i][h*j]=i*j*h; | ||
+ | } | ||
+ | } | ||
+ | while(tail>=head&&j-q[head]>=k) | ||
+ | { | ||
+ | head++; | ||
+ | } | ||
+ | while(tail>=head&&A[i][j]>A[i][q[tail]]) | ||
+ | { | ||
+ | tail--; | ||
+ | } | ||
+ | q[++tail]=j; | ||
+ | if(j>=k) | ||
+ | { | ||
+ | b[i][j-k+1]=A[i][q[head]]; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | int j; | ||
+ | for(j=1;j<=m-k+1;j++) | ||
+ | { | ||
+ | head=1,tail=0; | ||
+ | for(i=1;i<=n;i++) | ||
+ | { | ||
+ | while(tail>=head&&i-q[head]>=k) | ||
+ | { | ||
+ | head++; | ||
+ | } | ||
+ | while(tail>=head&&b[i][j]>b[q[tail]][j]) | ||
+ | { | ||
+ | tail--; | ||
+ | } | ||
+ | q[++tail]=i; | ||
+ | if(i>=k) | ||
+ | { | ||
+ | res+=b[q[head]][j]; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | printf("%lld\n",res); | ||
+ | return 0; | ||
+ | } | ||
+ | |||
+ | </code> | ||
+ | </hidden> | ||
+ | |||
+ | 注意,样例在5000范围,5000乘5000的gcd数组不用short的话会爆内存。 | ||
+ | |||
=====C===== | =====C===== | ||
行 121: | 行 206: | ||
唉,怪不得。那么代码就更简单了,low的不谈 | 唉,怪不得。那么代码就更简单了,low的不谈 | ||
- | 上面这个代码是不重复覆盖的优秀代码 | + | 上面这个代码是不重复覆盖的优秀代码。 |
- | ======B====== | + | 下面来源于隔壁队伍的通关代码。我不知道为什么里面DFS还用到队列等等一大堆的东西。 |
- | + | ||
- | 储存斜率用了两种做法。开longlong那个TLE掉了,double那个WA了,实在无语…… | + | |
<hidden> | <hidden> | ||
<code C++> | <code C++> | ||
- | #include<iostream> | + | #include<stdio.h> |
- | #include<vector> | + | #include<string.h> |
- | #include<map> | + | #include<stdlib.h> |
+ | |||
+ | #include<queue> | ||
using namespace std; | using namespace std; | ||
- | #define x first | + | int head[200005],tot; |
- | #define y second | + | int du[200005]; |
- | vector<pair<double,double> > points; | + | struct E |
+ | { | ||
+ | int nxt,to; | ||
+ | }; | ||
+ | |||
+ | struct E e[200005<<1]; | ||
- | int maxPoints() | + | void add(int x,int y) |
{ | { | ||
- | int res = 0; | + | e[++tot].nxt = head[x]; |
- | for (int i = 0; i < points.size(); ++i) | + | head[x] = tot; |
+ | e[tot].to = y; | ||
+ | e[++tot].nxt = head[y]; | ||
+ | head[y] = tot; | ||
+ | e[tot].to = x; | ||
+ | } | ||
+ | |||
+ | queue<int> sons[200005]; | ||
+ | |||
+ | int anss[200005][2],anscnt; | ||
+ | |||
+ | void dfs(int x,int fa) | ||
+ | { | ||
+ | char isson = 1; | ||
+ | int tomatch = 0; | ||
+ | int i; | ||
+ | for(i=head[x];i;i=e[i].nxt) | ||
{ | { | ||
- | map<double,int> m; | + | if (e[i].to!=fa) |
- | int duplicate = 1; | + | |
- | for (int j = i + 1; j < points.size(); ++j) | + | |
{ | { | ||
- | if (points[i].x== points[j].x&& points[i].y== points[j].y) | + | dfs(e[i].to,x); |
+ | isson = 0; | ||
+ | tomatch += sons[e[i].to].size(); | ||
+ | } | ||
+ | } | ||
+ | if(isson) | ||
+ | { | ||
+ | sons[x].push(x); | ||
+ | } | ||
+ | queue<int> son2,son1; | ||
+ | for(i=head[x];i;i=e[i].nxt) | ||
+ | { | ||
+ | if(e[i].to!=fa) | ||
+ | { | ||
+ | if(sons[e[i].to].size()==2) | ||
{ | { | ||
- | ++duplicate; | + | son2.push(e[i].to); |
- | continue; | + | |
- | } | + | |
- | if(points[j].x*points[i].y==points[i].x*points[j].y) | + | |
- | { | + | |
- | continue; | + | |
} | } | ||
- | double dx = points[j].x- points[i].x; | + | else if(sons[e[i].to].size()==1) |
- | double dy = points[j].y- points[i].y; | + | { |
- | ++m[{dx/dy}]; | + | son1.push(e[i].to); |
- | } | + | } |
- | res = max(res, duplicate); | + | } |
- | map<double,int>::iterator it; | + | } |
- | for (it = m.begin(); it != m.end(); ++it) | + | if (son2.size()%2==1 && son1.size() == 0 && son2.size()!=1) |
+ | { | ||
+ | int x1=son2.front(); | ||
+ | son2.pop(); | ||
+ | int x2=son2.front(); | ||
+ | son2.pop(); | ||
+ | int x3=son2.front(); | ||
+ | son2.pop(); | ||
+ | anss[anscnt+1][0]=sons[x1].front(); | ||
+ | sons[x1].pop(); | ||
+ | anss[anscnt+1][1]=sons[x2].front(); | ||
+ | sons[x2].pop(); | ||
+ | anss[anscnt+2][0]=sons[x1].front(); | ||
+ | sons[x1].pop(); | ||
+ | anss[anscnt+2][1]=sons[x3].front(); | ||
+ | sons[x3].pop(); | ||
+ | son1.push(x2); | ||
+ | son1.push(x3); | ||
+ | anscnt+=2; | ||
+ | } | ||
+ | while(son2.size()>=2) | ||
+ | { | ||
+ | int x1 = son2.front(); | ||
+ | son2.pop(); | ||
+ | int x2 = son2.front(); | ||
+ | son2.pop(); | ||
+ | anss[anscnt+1][0] = sons[x1].front(); | ||
+ | sons[x1].pop(); | ||
+ | anss[anscnt+1][1] = sons[x2].front(); | ||
+ | sons[x2].pop(); | ||
+ | son1.push(x1); | ||
+ | son1.push(x2); | ||
+ | anscnt++; | ||
+ | } | ||
+ | while(son2.size()*2 + son1.size() > 2) | ||
+ | { | ||
+ | if (son2.size()) | ||
{ | { | ||
- | res = max(res, it->second + duplicate); | + | int x1 = son2.front(); |
- | } | + | son2.pop(); |
- | } | + | int x2 = son1.front(); |
- | return res; | + | son1.pop(); |
+ | anss[anscnt+1][0] = sons[x1].front(); | ||
+ | sons[x1].pop(); | ||
+ | anss[anscnt+1][1] = sons[x2].front(); | ||
+ | sons[x2].pop(); | ||
+ | son1.push(x1); | ||
+ | anscnt++; | ||
+ | } | ||
+ | else | ||
+ | { | ||
+ | int x1 = son1.front(); | ||
+ | son1.pop(); | ||
+ | int x2 = son1.front(); | ||
+ | son1.pop(); | ||
+ | anss[anscnt+1][0] = sons[x1].front(); | ||
+ | sons[x1].pop(); | ||
+ | anss[anscnt+1][1] = sons[x2].front(); | ||
+ | sons[x2].pop(); | ||
+ | anscnt++; | ||
+ | } | ||
+ | } | ||
+ | for(i = head[x];i;i=e[i].nxt) | ||
+ | { | ||
+ | if (e[i].to!=fa) | ||
+ | { | ||
+ | while (sons[e[i].to].size()) | ||
+ | { | ||
+ | int tmp = sons[e[i].to].front(); | ||
+ | sons[x].push(tmp); | ||
+ | sons[e[i].to].pop(); | ||
+ | } | ||
+ | } | ||
+ | } | ||
} | } | ||
行 177: | 行 358: | ||
int n; | int n; | ||
scanf("%d",&n); | scanf("%d",&n); | ||
- | double x,y; | + | int x,y; |
- | while(n--) | + | int i; |
+ | for(i=1;i<n;i++) | ||
{ | { | ||
- | cin >> x >> y; | + | scanf("%d%d",&x,&y); |
- | double temp=x*x+y*y; | + | add(x,y); |
- | points.push_back(make_pair(x/temp,y/temp)); | + | du[x]++; |
+ | du[y]++; | ||
} | } | ||
- | cout << maxPoints() << endl; | + | if(n==1) |
- | return 0 ; | + | { |
+ | printf("1\n1 1\n"); | ||
+ | return 0; | ||
+ | } | ||
+ | if(n==2) | ||
+ | { | ||
+ | printf("1\n1 2\n"); | ||
+ | return 0; | ||
+ | } | ||
+ | for(i=1;i<=n;i++) | ||
+ | { | ||
+ | if(du[i]!=1) | ||
+ | { | ||
+ | dfs(i,0); | ||
+ | if(sons[i].size()==2) | ||
+ | { | ||
+ | anscnt++; | ||
+ | anss[anscnt][0]=sons[i].front(); | ||
+ | sons[i].pop(); | ||
+ | anss[anscnt][1]=sons[i].front(); | ||
+ | } | ||
+ | else | ||
+ | { | ||
+ | anscnt++; | ||
+ | anss[anscnt][0]=sons[i].front(); | ||
+ | anss[anscnt][1]=i; | ||
+ | } | ||
+ | break; | ||
+ | } | ||
+ | } | ||
+ | printf("%d\n",anscnt); | ||
+ | for(i=1;i<=anscnt;i++) | ||
+ | { | ||
+ | printf("%d %d\n",anss[i][0],anss[i][1]); | ||
+ | } | ||
+ | return 0; | ||
} | } | ||
- | |||
</code> | </code> | ||
</hidden> | </hidden> | ||
+ | |||
+ | =====B===== | ||
+ | |||
+ | 储存斜率用了两种做法。开longlong那个TLE掉了,double那个WA了,实在无语…… | ||
+ | |||
+ | WA的double已经改正了。那么错的就不留了,只留下错的longlong存斜率版本。 | ||
<hidden> | <hidden> | ||
<code C++> | <code C++> | ||
- | |||
#include<iostream> | #include<iostream> | ||
行 265: | 行 487: | ||
后记:这种采用了反演的写法要考虑eps—— | 后记:这种采用了反演的写法要考虑eps—— | ||
- | 事实证明,没有通过就是eps的问题。唉,太悲伤了 | + | 事实证明,没有通过就是eps的问题。唉,太悲伤了…… |
+ | 以下是修改后的通关代码: | ||
+ | <hidden> | ||
+ | <code C++> | ||
+ | |||
+ | #include<stdio.h> | ||
+ | |||
+ | #include<vector> | ||
+ | #include<map> | ||
+ | |||
+ | using namespace std; | ||
+ | |||
+ | #define eps 1e-12 | ||
+ | |||
+ | struct compare | ||
+ | { | ||
+ | bool operator()(const double &key1,const double &key2) | ||
+ | { | ||
+ | if(key1-key2<(-eps)||key1-key2>eps) | ||
+ | { | ||
+ | return key1<key2; | ||
+ | } | ||
+ | else | ||
+ | { | ||
+ | return 0; | ||
+ | } | ||
+ | } | ||
+ | }; | ||
+ | |||
+ | vector<pair<double,double> > points; | ||
+ | |||
+ | int maxPoints() | ||
+ | { | ||
+ | int res=1; | ||
+ | int i; | ||
+ | for(i=0;i<points.size();++i) | ||
+ | { | ||
+ | map<double,int,compare> m; | ||
+ | int j; | ||
+ | for(j=i+1;j<points.size();++j) | ||
+ | { | ||
+ | if(points[j].first*points[i].second==points[i].first*points[j].second) | ||
+ | { | ||
+ | continue; | ||
+ | } | ||
+ | double dx=points[j].first-points[i].first; | ||
+ | double dy=points[j].second-points[i].second; | ||
+ | ++m[dx/dy]; | ||
+ | } | ||
+ | map<double,int>::iterator it; | ||
+ | for(it=m.begin();it!=m.end();++it) | ||
+ | { | ||
+ | res=max(res,it->second+1); | ||
+ | } | ||
+ | } | ||
+ | return res; | ||
+ | } | ||
+ | |||
+ | int main() | ||
+ | { | ||
+ | int n; | ||
+ | scanf("%d",&n); | ||
+ | double x,y; | ||
+ | while(n--) | ||
+ | { | ||
+ | scanf("%lf%lf",&x,&y); | ||
+ | double temp=x*x+y*y; | ||
+ | points.push_back(make_pair(x/temp,y/temp)); | ||
+ | } | ||
+ | printf("%d\n",maxPoints()); | ||
+ | return 0; | ||
+ | } | ||
+ | |||
+ | </code> | ||
+ | </hidden> | ||
+ | |||
+ | 我们需要学习**在map中引入自定义运算符**,从而实现map中的eps控制。 | ||
+ | |||
+ | =====K===== | ||
+ | |||
+ | 我一开始想手算积分,结果发现这个多元积分上下限有绝对值判定,换句话说积不出来。那么就只能使用积分算法了。 | ||
+ | |||
+ | <hidden> | ||
+ | <code C> | ||
+ | |||
+ | #include<stdio.h> | ||
+ | #include<math.h> | ||
+ | |||
+ | const double pi=acos(-1.0); | ||
+ | |||
+ | double r1,r2,r3; | ||
+ | |||
+ | double sqr(double x) | ||
+ | { | ||
+ | return x*x; | ||
+ | } | ||
+ | |||
+ | double f(double j) | ||
+ | { | ||
+ | double EG=sqrt(sqr(r1)+sqr(r2)-2*cos(j)*r1*r2); | ||
+ | double AGE=acos((sqr(r1)+sqr(EG)-sqr(r2))/2/r1/EG); | ||
+ | double alp=asin(r1*sin(AGE)/r3); | ||
+ | return r3*(alp*sin(alp)+cos(alp))*EG/pi; | ||
+ | } | ||
+ | |||
+ | double swap(double *p1,double *p2) | ||
+ | { | ||
+ | double temp; | ||
+ | temp=(*p1); | ||
+ | (*p1)=(*p2); | ||
+ | (*p2)=temp; | ||
+ | } | ||
+ | |||
+ | int main() | ||
+ | { | ||
+ | int t; | ||
+ | scanf("%d",&t); | ||
+ | while(t--) | ||
+ | { | ||
+ | scanf("%lf%lf%lf",&r1,&r2,&r3); | ||
+ | if(r1>r2) | ||
+ | { | ||
+ | swap(&r1,&r2); | ||
+ | } | ||
+ | if(r2>r3) | ||
+ | { | ||
+ | swap(&r2,&r3); | ||
+ | } | ||
+ | if(r1>r2) | ||
+ | { | ||
+ | swap(&r1,&r2); | ||
+ | } | ||
+ | double res=0,j=pi/10000.0; | ||
+ | int i; | ||
+ | for(i=0;i<5000;i++,j+=pi/5000.0) | ||
+ | { | ||
+ | res+=f(j); | ||
+ | } | ||
+ | printf("%.1lf\n",res/5000); | ||
+ | } | ||
+ | return 0; | ||
+ | } | ||
+ | |||
+ | </code> | ||
+ | </hidden> | ||
+ | |||
+ | 积分算法原来也不难,模拟就好了。反正要求精度不高…… | ||
+ | |||
+ | =====E===== | ||
+ | |||
+ | 集合中可重复取数,求异或的最大值,集合大小很大。 | ||
+ | |||
+ | 有一个与FFT、NTT非常相似的东西叫FWT,比前两者简单,用于解决数组异或(不进位加法)卷积的问题。 | ||
+ | |||
+ | FWT和它的逆,将数组异或(不进位加法)的卷积变为了乘法。 | ||
+ | |||
+ | <hidden> | ||
+ | <code C> | ||
+ | |||
+ | #include<stdio.h> | ||
+ | |||
+ | int n,nans[1<<18],one[1<<18],ans[200005]; | ||
+ | |||
+ | void FWT(int *src,int t) | ||
+ | { | ||
+ | int sz; | ||
+ | for(sz = 2;sz <= 1<<18;sz<<=1) | ||
+ | { | ||
+ | int step = sz >> 1; | ||
+ | int i; | ||
+ | for(i = 0;i< 1<<18;i+=sz) | ||
+ | { | ||
+ | int j; | ||
+ | for(j = i;j < i+step;j++) | ||
+ | { | ||
+ | int a = src[j]; | ||
+ | int b = src[j+step]; | ||
+ | src[j] = a+b; | ||
+ | src[j+step] = a-b; | ||
+ | if(t==-1) | ||
+ | { | ||
+ | src[j]>>=1; | ||
+ | src[j+step]>>=1; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | |||
+ | int main() | ||
+ | { | ||
+ | scanf("%d",&n); | ||
+ | int x; | ||
+ | int i; | ||
+ | for(i = 1;i<= n;i++) | ||
+ | { | ||
+ | scanf("%d",&x); | ||
+ | one[x]=1; | ||
+ | nans[x]=1; | ||
+ | if (x > ans[1]) | ||
+ | { | ||
+ | ans[1] = x; | ||
+ | } | ||
+ | } | ||
+ | FWT(one,1); | ||
+ | for(i = 2;i<= 20;i++) | ||
+ | { | ||
+ | FWT(nans,1); | ||
+ | int j; | ||
+ | for(j = 0;j < 1<<18;j++) | ||
+ | { | ||
+ | nans[j] = nans[j]*one[j]; | ||
+ | } | ||
+ | FWT(nans,-1); | ||
+ | for(j = 0;j < 1<<18;j++) | ||
+ | { | ||
+ | if (nans[j]) | ||
+ | { | ||
+ | nans[j] = 1; | ||
+ | } | ||
+ | } | ||
+ | for(j=(1<<18)-1;j>=0;j--) | ||
+ | { | ||
+ | if (nans[j]) | ||
+ | { | ||
+ | ans[i] = j; | ||
+ | break; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | for(i = 21;i<= n;i++) | ||
+ | { | ||
+ | ans[i] = ans[i-2]; | ||
+ | } | ||
+ | for(i = 1;i<= n;i++) | ||
+ | { | ||
+ | printf("%d ",ans[i]); | ||
+ | } | ||
+ | } | ||
+ | |||
+ | </code> | ||
+ | </hidden> | ||
+ | |||
+ | =====J===== | ||
+ | |||
+ | 对给定置换A开k次方,k是个大素数。 | ||
+ | |||
+ | 由群论知,对大素数k,k次方运算是一一映射,所以实质是个求数论倒数的运算。 | ||
+ | |||
+ | 由于模不是素数,用费马欧拉定理不方便,只能改用一次不定方程的扩展来求逆。 | ||
+ | |||
+ | <hidden> | ||
+ | <code C++> | ||
+ | |||
+ | #include<stdio.h> | ||
+ | |||
+ | #include<vector> | ||
+ | |||
+ | using namespace std; | ||
+ | |||
+ | long long extgcd(long long a,long long b,long long& u,long long& v) | ||
+ | { | ||
+ | long long d; | ||
+ | if(b==0) | ||
+ | { | ||
+ | d = a; | ||
+ | u=1,v=0; | ||
+ | } | ||
+ | else | ||
+ | { | ||
+ | d = extgcd(b,a%b,v,u); | ||
+ | v -= a/b*u; | ||
+ | } | ||
+ | return d; | ||
+ | } | ||
+ | |||
+ | int n,k,vis[100005]; | ||
+ | int P[100005],ans[100005],a[100005],tmp[100005],ttt[100005]; | ||
+ | |||
+ | int main() | ||
+ | { | ||
+ | scanf("%d%d",&n,&k); | ||
+ | int i; | ||
+ | for(i=1;i<=n;i++) | ||
+ | { | ||
+ | scanf("%d",&a[i]); | ||
+ | } | ||
+ | for(i=1;i<=n;i++) | ||
+ | { | ||
+ | if(!vis[i]) | ||
+ | { | ||
+ | vis[i] = 1; | ||
+ | vector<int> pos; | ||
+ | int u = a[i],len = 1;pos.push_back(i); | ||
+ | while(u!=i) | ||
+ | { | ||
+ | len++; | ||
+ | vis[u] = 1;pos.push_back(u); | ||
+ | u = a[u]; | ||
+ | } | ||
+ | long long x,y; | ||
+ | extgcd(k,len,x,y); | ||
+ | x = (x%len+len)%len; | ||
+ | int j; | ||
+ | for(j=1;j<=len;j++) | ||
+ | { | ||
+ | ans[pos[j-1]] = pos[(j-1+x)%len]; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | for(i=1;i<=n;i++) | ||
+ | { | ||
+ | printf("%d ",ans[i]); | ||
+ | } | ||
+ | return 0; | ||
+ | } | ||
+ | |||
+ | </code> | ||
+ | </hidden> | ||