这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
2020-2021:teams:namespace:牛客多校第二场 [2020/07/16 10:27] great_designer [C] |
2020-2021:teams:namespace:牛客多校第二场 [2020/07/17 12:24] (当前版本) great_designer [E] |
||
---|---|---|---|
行 5: | 行 5: | ||
=====D===== | =====D===== | ||
- | 唯一一道水题。 | + | 唯一一道过了的水题。 |
<hidden> | <hidden> | ||
行 34: | 行 34: | ||
=====F===== | =====F===== | ||
+ | |||
+ | 以下是补题。 | ||
这个题TLE掉了。原因是单调队列不熟练,还需要一个记忆化的小技巧。 | 这个题TLE掉了。原因是单调队列不熟练,还需要一个记忆化的小技巧。 | ||
- | 记忆化技巧代码: | + | 记忆化技巧代码加单调队列: |
- | + | ||
- | <hidden> | + | |
- | <code C> | + | |
- | + | ||
- | int i; | + | |
- | for(i=1;i<=n;i++) | + | |
- | { | + | |
- | int j; | + | |
- | for(j=1;j<=m;j++) | + | |
- | { | + | |
- | if(!Gcd[i][j]) | + | |
- | { | + | |
- | int k; | + | |
- | for(k=1;k*i<=n&&k*j<=m;k++) | + | |
- | { | + | |
- | Gcd[k*i][k*j]=k; | + | |
- | A[k*i][k*j]=i*j*k; | + | |
- | } | + | |
- | } | + | |
- | } | + | |
- | } | + | |
- | + | ||
- | </code> | + | |
- | </hidden> | + | |
- | + | ||
- | 单调队列: | + | |
<hidden> | <hidden> | ||
行 70: | 行 46: | ||
#include<stdio.h> | #include<stdio.h> | ||
- | int a[5010][5010],b[5010][5010]; | + | short Gcd[5010][5010]; |
- | int head,tail,q[50100]; | + | short head,tail,q[5010]; |
- | int gcd(int a,int b) | + | int A[5010][5010],b[5010][5010]; |
- | { | + | |
- | return b?gcd(b,a%b):a; | + | |
- | } | + | |
- | + | ||
- | int lcm(int a,int b) | + | |
- | { | + | |
- | return a*b/gcd(a,b); | + | |
- | } | + | |
int main() | int main() | ||
行 88: | 行 56: | ||
scanf("%d%d%d",&n,&m,&k); | scanf("%d%d%d",&n,&m,&k); | ||
long long res=0; | long long res=0; | ||
- | int i; | + | int i; |
for(i=1;i<=n;i++) | for(i=1;i<=n;i++) | ||
{ | { | ||
行 95: | 行 63: | ||
for(j=1;j<=m;j++) | for(j=1;j<=m;j++) | ||
{ | { | ||
- | a[i][j]=lcm(i,j); | + | if(!Gcd[i][j]) |
+ | { | ||
+ | int h; | ||
+ | for(h=1;h*i<=n&&h*j<=m;h++) | ||
+ | { | ||
+ | Gcd[h*i][h*j]=h; | ||
+ | A[h*i][h*j]=i*j*h; | ||
+ | } | ||
+ | } | ||
while(tail>=head&&j-q[head]>=k) | while(tail>=head&&j-q[head]>=k) | ||
{ | { | ||
head++; | head++; | ||
} | } | ||
- | while(tail>=head&&a[i][j]>a[i][q[tail]]) | + | while(tail>=head&&A[i][j]>A[i][q[tail]]) |
{ | { | ||
tail--; | tail--; | ||
行 107: | 行 83: | ||
if(j>=k) | if(j>=k) | ||
{ | { | ||
- | b[i][j-k+1]=a[i][q[head]]; | + | b[i][j-k+1]=A[i][q[head]]; |
} | } | ||
} | } | ||
行 139: | 行 115: | ||
</hidden> | </hidden> | ||
- | 如果能把两者结合起来就好了。 | + | 注意,样例在5000范围,5000乘5000的gcd数组不用short的话会爆内存。 |
=====C===== | =====C===== | ||
行 433: | 行 409: | ||
</hidden> | </hidden> | ||
- | ======B====== | + | =====B===== |
储存斜率用了两种做法。开longlong那个TLE掉了,double那个WA了,实在无语…… | 储存斜率用了两种做法。开longlong那个TLE掉了,double那个WA了,实在无语…… | ||
+ | |||
+ | WA的double已经改正了。那么错的就不留了,只留下错的longlong存斜率版本。 | ||
<hidden> | <hidden> | ||
行 446: | 行 424: | ||
using namespace std; | using namespace std; | ||
- | #define x first | + | vector<pair<long long,long long> > points; |
- | #define y second | + | |
- | vector<pair<double,double> > points; | + | long long gcd(long long a,long long b) |
+ | { | ||
+ | return (b == 0) ? a : gcd(b, a % b); | ||
+ | } | ||
int maxPoints() | int maxPoints() | ||
行 456: | 行 436: | ||
for (int i = 0; i < points.size(); ++i) | for (int i = 0; i < points.size(); ++i) | ||
{ | { | ||
- | map<double,int> m; | + | map<pair<int, int>, int> m; |
int duplicate = 1; | int duplicate = 1; | ||
for (int j = i + 1; j < points.size(); ++j) | for (int j = i + 1; j < points.size(); ++j) | ||
{ | { | ||
- | if (points[i].x== points[j].x&& points[i].y== points[j].y) | + | if (points[i].first== points[j].first&& points[i].second== points[j].second) |
{ | { | ||
++duplicate; | ++duplicate; | ||
continue; | continue; | ||
- | } | + | } |
- | if(points[j].x*points[i].y==points[i].x*points[j].y) | + | long long x1=points[i].first; |
+ | long long x2=points[j].first; | ||
+ | long long y1=points[i].second; | ||
+ | long long y2=points[j].second; | ||
+ | if(x1*y2==y1*x2) | ||
{ | { | ||
continue; | continue; | ||
} | } | ||
- | double dx = points[j].x- points[i].x; | + | long long dx =x2*(x1*x1+y1*y1)-x1*(x2*x2+y2*y2); |
- | double dy = points[j].y- points[i].y; | + | long long dy =y2*(x1*x1+y1*y1)-y1*(x2*x2+y2*y2); |
- | ++m[{dx/dy}]; | + | long long d = gcd(dx, dy); |
+ | ++m[{dx / d, dy / d}]; | ||
} | } | ||
res = max(res, duplicate); | res = max(res, duplicate); | ||
- | map<double,int>::iterator it; | + | map<pair<int,int>,int>::iterator it; |
- | for (it = m.begin(); it != m.end(); ++it) | + | for(it = m.begin(); it != m.end(); ++it) |
{ | { | ||
res = max(res, it->second + duplicate); | res = max(res, it->second + duplicate); | ||
行 487: | 行 472: | ||
int n; | int n; | ||
scanf("%d",&n); | scanf("%d",&n); | ||
- | double x,y; | + | long long x,y; |
while(n--) | while(n--) | ||
{ | { | ||
cin >> x >> y; | cin >> x >> y; | ||
- | double temp=x*x+y*y; | + | points.push_back(make_pair(x,y)); |
- | points.push_back(make_pair(x/temp,y/temp)); | + | |
} | } | ||
cout << maxPoints() << endl; | cout << maxPoints() << endl; | ||
return 0 ; | return 0 ; | ||
} | } | ||
- | |||
</code> | </code> | ||
</hidden> | </hidden> | ||
+ | |||
+ | 后记:这种采用了反演的写法要考虑eps—— | ||
+ | |||
+ | 事实证明,没有通过就是eps的问题。唉,太悲伤了…… | ||
+ | |||
+ | 以下是修改后的通关代码: | ||
<hidden> | <hidden> | ||
<code C++> | <code C++> | ||
+ | #include<stdio.h> | ||
- | #include<iostream> | ||
#include<vector> | #include<vector> | ||
#include<map> | #include<map> | ||
行 512: | 行 501: | ||
using namespace std; | using namespace std; | ||
- | vector<pair<long long,long long> > points; | + | #define eps 1e-12 |
- | long long gcd(long long a,long long b) | + | struct compare |
{ | { | ||
- | return (b == 0) ? a : gcd(b, a % b); | + | bool operator()(const double &key1,const double &key2) |
- | } | + | { |
+ | if(key1-key2<(-eps)||key1-key2>eps) | ||
+ | { | ||
+ | return key1<key2; | ||
+ | } | ||
+ | else | ||
+ | { | ||
+ | return 0; | ||
+ | } | ||
+ | } | ||
+ | }; | ||
+ | |||
+ | vector<pair<double,double> > points; | ||
int maxPoints() | int maxPoints() | ||
{ | { | ||
- | int res = 0; | + | int res=1; |
- | for (int i = 0; i < points.size(); ++i) | + | int i; |
+ | for(i=0;i<points.size();++i) | ||
{ | { | ||
- | map<pair<int, int>, int> m; | + | map<double,int,compare> m; |
- | int duplicate = 1; | + | int j; |
- | for (int j = i + 1; j < points.size(); ++j) | + | for(j=i+1;j<points.size();++j) |
{ | { | ||
- | if (points[i].first== points[j].first&& points[i].second== points[j].second) | + | if(points[j].first*points[i].second==points[i].first*points[j].second) |
- | { | + | |
- | ++duplicate; | + | |
- | continue; | + | |
- | } | + | |
- | long long x1=points[i].first; | + | |
- | long long x2=points[j].first; | + | |
- | long long y1=points[i].second; | + | |
- | long long y2=points[j].second; | + | |
- | if(x1*y2==y1*x2) | + | |
{ | { | ||
continue; | continue; | ||
} | } | ||
- | long long dx =x2*(x1*x1+y1*y1)-x1*(x2*x2+y2*y2); | + | double dx=points[j].first-points[i].first; |
- | long long dy =y2*(x1*x1+y1*y1)-y1*(x2*x2+y2*y2); | + | double dy=points[j].second-points[i].second; |
- | long long d = gcd(dx, dy); | + | ++m[dx/dy]; |
- | ++m[{dx / d, dy / d}]; | + | |
} | } | ||
- | res = max(res, duplicate); | + | map<double,int>::iterator it; |
- | map<pair<int,int>,int>::iterator it; | + | for(it=m.begin();it!=m.end();++it) |
- | for(it = m.begin(); it != m.end(); ++it) | + | |
{ | { | ||
- | res = max(res, it->second + duplicate); | + | res=max(res,it->second+1); |
} | } | ||
} | } | ||
行 560: | 行 551: | ||
int n; | int n; | ||
scanf("%d",&n); | scanf("%d",&n); | ||
- | long long x,y; | + | double x,y; |
while(n--) | while(n--) | ||
{ | { | ||
- | cin >> x >> y; | + | scanf("%lf%lf",&x,&y); |
- | points.push_back(make_pair(x,y)); | + | double temp=x*x+y*y; |
+ | points.push_back(make_pair(x/temp,y/temp)); | ||
} | } | ||
- | cout << maxPoints() << endl; | + | printf("%d\n",maxPoints()); |
- | return 0 ; | + | return 0; |
} | } | ||
行 573: | 行 565: | ||
</hidden> | </hidden> | ||
- | 后记:这种采用了反演的写法要考虑eps—— | + | 我们需要学习**在map中引入自定义运算符**,从而实现map中的eps控制。 |
- | 事实证明,没有通过就是eps的问题。唉,太悲伤了 | + | =====K===== |
+ | 我一开始想手算积分,结果发现这个多元积分上下限有绝对值判定,换句话说积不出来。那么就只能使用积分算法了。 | ||
+ | <hidden> | ||
+ | <code C> | ||
+ | |||
+ | #include<stdio.h> | ||
+ | #include<math.h> | ||
+ | |||
+ | const double pi=acos(-1.0); | ||
+ | |||
+ | double r1,r2,r3; | ||
+ | |||
+ | double sqr(double x) | ||
+ | { | ||
+ | return x*x; | ||
+ | } | ||
+ | |||
+ | double f(double j) | ||
+ | { | ||
+ | double EG=sqrt(sqr(r1)+sqr(r2)-2*cos(j)*r1*r2); | ||
+ | double AGE=acos((sqr(r1)+sqr(EG)-sqr(r2))/2/r1/EG); | ||
+ | double alp=asin(r1*sin(AGE)/r3); | ||
+ | return r3*(alp*sin(alp)+cos(alp))*EG/pi; | ||
+ | } | ||
+ | |||
+ | double swap(double *p1,double *p2) | ||
+ | { | ||
+ | double temp; | ||
+ | temp=(*p1); | ||
+ | (*p1)=(*p2); | ||
+ | (*p2)=temp; | ||
+ | } | ||
+ | |||
+ | int main() | ||
+ | { | ||
+ | int t; | ||
+ | scanf("%d",&t); | ||
+ | while(t--) | ||
+ | { | ||
+ | scanf("%lf%lf%lf",&r1,&r2,&r3); | ||
+ | if(r1>r2) | ||
+ | { | ||
+ | swap(&r1,&r2); | ||
+ | } | ||
+ | if(r2>r3) | ||
+ | { | ||
+ | swap(&r2,&r3); | ||
+ | } | ||
+ | if(r1>r2) | ||
+ | { | ||
+ | swap(&r1,&r2); | ||
+ | } | ||
+ | double res=0,j=pi/10000.0; | ||
+ | int i; | ||
+ | for(i=0;i<5000;i++,j+=pi/5000.0) | ||
+ | { | ||
+ | res+=f(j); | ||
+ | } | ||
+ | printf("%.1lf\n",res/5000); | ||
+ | } | ||
+ | return 0; | ||
+ | } | ||
+ | |||
+ | </code> | ||
+ | </hidden> | ||
+ | |||
+ | 积分算法原来也不难,模拟就好了。反正要求精度不高…… | ||
+ | |||
+ | =====E===== | ||
+ | |||
+ | 集合中可重复取数,求异或的最大值,集合大小很大。 | ||
+ | |||
+ | 有一个与FFT、NTT非常相似的东西叫FWT,比前两者简单,用于解决数组异或(不进位加法)卷积的问题。 | ||
+ | |||
+ | FWT和它的逆,将数组异或(不进位加法)的卷积变为了乘法。 | ||
+ | |||
+ | <hidden> | ||
+ | <code C> | ||
+ | |||
+ | #include<stdio.h> | ||
+ | |||
+ | int n,nans[1<<18],one[1<<18],ans[200005]; | ||
+ | |||
+ | void FWT(int *src,int t) | ||
+ | { | ||
+ | int sz; | ||
+ | for(sz = 2;sz <= 1<<18;sz<<=1) | ||
+ | { | ||
+ | int step = sz >> 1; | ||
+ | int i; | ||
+ | for(i = 0;i< 1<<18;i+=sz) | ||
+ | { | ||
+ | int j; | ||
+ | for(j = i;j < i+step;j++) | ||
+ | { | ||
+ | int a = src[j]; | ||
+ | int b = src[j+step]; | ||
+ | src[j] = a+b; | ||
+ | src[j+step] = a-b; | ||
+ | if(t==-1) | ||
+ | { | ||
+ | src[j]>>=1; | ||
+ | src[j+step]>>=1; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | |||
+ | int main() | ||
+ | { | ||
+ | scanf("%d",&n); | ||
+ | int x; | ||
+ | int i; | ||
+ | for(i = 1;i<= n;i++) | ||
+ | { | ||
+ | scanf("%d",&x); | ||
+ | one[x]=1; | ||
+ | nans[x]=1; | ||
+ | if (x > ans[1]) | ||
+ | { | ||
+ | ans[1] = x; | ||
+ | } | ||
+ | } | ||
+ | FWT(one,1); | ||
+ | for(i = 2;i<= 20;i++) | ||
+ | { | ||
+ | FWT(nans,1); | ||
+ | int j; | ||
+ | for(j = 0;j < 1<<18;j++) | ||
+ | { | ||
+ | nans[j] = nans[j]*one[j]; | ||
+ | } | ||
+ | FWT(nans,-1); | ||
+ | for(j = 0;j < 1<<18;j++) | ||
+ | { | ||
+ | if (nans[j]) | ||
+ | { | ||
+ | nans[j] = 1; | ||
+ | } | ||
+ | } | ||
+ | for(j=(1<<18)-1;j>=0;j--) | ||
+ | { | ||
+ | if (nans[j]) | ||
+ | { | ||
+ | ans[i] = j; | ||
+ | break; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | for(i = 21;i<= n;i++) | ||
+ | { | ||
+ | ans[i] = ans[i-2]; | ||
+ | } | ||
+ | for(i = 1;i<= n;i++) | ||
+ | { | ||
+ | printf("%d ",ans[i]); | ||
+ | } | ||
+ | } | ||
+ | |||
+ | </code> | ||
+ | </hidden> | ||
+ | |||
+ | =====J===== | ||
+ | |||
+ | 对给定置换A开k次方,k是个大素数。 | ||
+ | |||
+ | 由群论知,对大素数k,k次方运算是一一映射,所以实质是个求数论倒数的运算。 | ||
+ | |||
+ | 由于模不是素数,用费马欧拉定理不方便,只能改用一次不定方程的扩展来求逆。 | ||
+ | |||
+ | <hidden> | ||
+ | <code C++> | ||
+ | |||
+ | #include<stdio.h> | ||
+ | |||
+ | #include<vector> | ||
+ | |||
+ | using namespace std; | ||
+ | |||
+ | long long extgcd(long long a,long long b,long long& u,long long& v) | ||
+ | { | ||
+ | long long d; | ||
+ | if(b==0) | ||
+ | { | ||
+ | d = a; | ||
+ | u=1,v=0; | ||
+ | } | ||
+ | else | ||
+ | { | ||
+ | d = extgcd(b,a%b,v,u); | ||
+ | v -= a/b*u; | ||
+ | } | ||
+ | return d; | ||
+ | } | ||
+ | |||
+ | int n,k,vis[100005]; | ||
+ | int P[100005],ans[100005],a[100005],tmp[100005],ttt[100005]; | ||
+ | |||
+ | int main() | ||
+ | { | ||
+ | scanf("%d%d",&n,&k); | ||
+ | int i; | ||
+ | for(i=1;i<=n;i++) | ||
+ | { | ||
+ | scanf("%d",&a[i]); | ||
+ | } | ||
+ | for(i=1;i<=n;i++) | ||
+ | { | ||
+ | if(!vis[i]) | ||
+ | { | ||
+ | vis[i] = 1; | ||
+ | vector<int> pos; | ||
+ | int u = a[i],len = 1;pos.push_back(i); | ||
+ | while(u!=i) | ||
+ | { | ||
+ | len++; | ||
+ | vis[u] = 1;pos.push_back(u); | ||
+ | u = a[u]; | ||
+ | } | ||
+ | long long x,y; | ||
+ | extgcd(k,len,x,y); | ||
+ | x = (x%len+len)%len; | ||
+ | int j; | ||
+ | for(j=1;j<=len;j++) | ||
+ | { | ||
+ | ans[pos[j-1]] = pos[(j-1+x)%len]; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | for(i=1;i<=n;i++) | ||
+ | { | ||
+ | printf("%d ",ans[i]); | ||
+ | } | ||
+ | return 0; | ||
+ | } | ||
+ | |||
+ | </code> | ||
+ | </hidden> | ||