这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
2020-2021:teams:namespace:牛客多校第二场 [2020/07/16 11:46] great_designer |
2020-2021:teams:namespace:牛客多校第二场 [2020/07/17 12:24] (当前版本) great_designer [E] |
||
---|---|---|---|
行 409: | 行 409: | ||
</hidden> | </hidden> | ||
- | ======B====== | + | =====B===== |
储存斜率用了两种做法。开longlong那个TLE掉了,double那个WA了,实在无语…… | 储存斜率用了两种做法。开longlong那个TLE掉了,double那个WA了,实在无语…… | ||
行 637: | 行 637: | ||
积分算法原来也不难,模拟就好了。反正要求精度不高…… | 积分算法原来也不难,模拟就好了。反正要求精度不高…… | ||
+ | =====E===== | ||
+ | |||
+ | 集合中可重复取数,求异或的最大值,集合大小很大。 | ||
+ | |||
+ | 有一个与FFT、NTT非常相似的东西叫FWT,比前两者简单,用于解决数组异或(不进位加法)卷积的问题。 | ||
+ | |||
+ | FWT和它的逆,将数组异或(不进位加法)的卷积变为了乘法。 | ||
+ | |||
+ | <hidden> | ||
+ | <code C> | ||
+ | |||
+ | #include<stdio.h> | ||
+ | |||
+ | int n,nans[1<<18],one[1<<18],ans[200005]; | ||
+ | |||
+ | void FWT(int *src,int t) | ||
+ | { | ||
+ | int sz; | ||
+ | for(sz = 2;sz <= 1<<18;sz<<=1) | ||
+ | { | ||
+ | int step = sz >> 1; | ||
+ | int i; | ||
+ | for(i = 0;i< 1<<18;i+=sz) | ||
+ | { | ||
+ | int j; | ||
+ | for(j = i;j < i+step;j++) | ||
+ | { | ||
+ | int a = src[j]; | ||
+ | int b = src[j+step]; | ||
+ | src[j] = a+b; | ||
+ | src[j+step] = a-b; | ||
+ | if(t==-1) | ||
+ | { | ||
+ | src[j]>>=1; | ||
+ | src[j+step]>>=1; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | |||
+ | int main() | ||
+ | { | ||
+ | scanf("%d",&n); | ||
+ | int x; | ||
+ | int i; | ||
+ | for(i = 1;i<= n;i++) | ||
+ | { | ||
+ | scanf("%d",&x); | ||
+ | one[x]=1; | ||
+ | nans[x]=1; | ||
+ | if (x > ans[1]) | ||
+ | { | ||
+ | ans[1] = x; | ||
+ | } | ||
+ | } | ||
+ | FWT(one,1); | ||
+ | for(i = 2;i<= 20;i++) | ||
+ | { | ||
+ | FWT(nans,1); | ||
+ | int j; | ||
+ | for(j = 0;j < 1<<18;j++) | ||
+ | { | ||
+ | nans[j] = nans[j]*one[j]; | ||
+ | } | ||
+ | FWT(nans,-1); | ||
+ | for(j = 0;j < 1<<18;j++) | ||
+ | { | ||
+ | if (nans[j]) | ||
+ | { | ||
+ | nans[j] = 1; | ||
+ | } | ||
+ | } | ||
+ | for(j=(1<<18)-1;j>=0;j--) | ||
+ | { | ||
+ | if (nans[j]) | ||
+ | { | ||
+ | ans[i] = j; | ||
+ | break; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | for(i = 21;i<= n;i++) | ||
+ | { | ||
+ | ans[i] = ans[i-2]; | ||
+ | } | ||
+ | for(i = 1;i<= n;i++) | ||
+ | { | ||
+ | printf("%d ",ans[i]); | ||
+ | } | ||
+ | } | ||
+ | |||
+ | </code> | ||
+ | </hidden> | ||
+ | |||
+ | =====J===== | ||
+ | |||
+ | 对给定置换A开k次方,k是个大素数。 | ||
+ | |||
+ | 由群论知,对大素数k,k次方运算是一一映射,所以实质是个求数论倒数的运算。 | ||
+ | |||
+ | 由于模不是素数,用费马欧拉定理不方便,只能改用一次不定方程的扩展来求逆。 | ||
+ | |||
+ | <hidden> | ||
+ | <code C++> | ||
+ | |||
+ | #include<stdio.h> | ||
+ | |||
+ | #include<vector> | ||
+ | |||
+ | using namespace std; | ||
+ | |||
+ | long long extgcd(long long a,long long b,long long& u,long long& v) | ||
+ | { | ||
+ | long long d; | ||
+ | if(b==0) | ||
+ | { | ||
+ | d = a; | ||
+ | u=1,v=0; | ||
+ | } | ||
+ | else | ||
+ | { | ||
+ | d = extgcd(b,a%b,v,u); | ||
+ | v -= a/b*u; | ||
+ | } | ||
+ | return d; | ||
+ | } | ||
+ | |||
+ | int n,k,vis[100005]; | ||
+ | int P[100005],ans[100005],a[100005],tmp[100005],ttt[100005]; | ||
+ | |||
+ | int main() | ||
+ | { | ||
+ | scanf("%d%d",&n,&k); | ||
+ | int i; | ||
+ | for(i=1;i<=n;i++) | ||
+ | { | ||
+ | scanf("%d",&a[i]); | ||
+ | } | ||
+ | for(i=1;i<=n;i++) | ||
+ | { | ||
+ | if(!vis[i]) | ||
+ | { | ||
+ | vis[i] = 1; | ||
+ | vector<int> pos; | ||
+ | int u = a[i],len = 1;pos.push_back(i); | ||
+ | while(u!=i) | ||
+ | { | ||
+ | len++; | ||
+ | vis[u] = 1;pos.push_back(u); | ||
+ | u = a[u]; | ||
+ | } | ||
+ | long long x,y; | ||
+ | extgcd(k,len,x,y); | ||
+ | x = (x%len+len)%len; | ||
+ | int j; | ||
+ | for(j=1;j<=len;j++) | ||
+ | { | ||
+ | ans[pos[j-1]] = pos[(j-1+x)%len]; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | for(i=1;i<=n;i++) | ||
+ | { | ||
+ | printf("%d ",ans[i]); | ||
+ | } | ||
+ | return 0; | ||
+ | } | ||
+ | |||
+ | </code> | ||
+ | </hidden> | ||