这里会显示出您选择的修订版和当前版本之间的差别。
| 两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
|
2020-2021:teams:namespace:牛客多校第二场 [2020/07/16 11:46] great_designer |
2020-2021:teams:namespace:牛客多校第二场 [2020/07/17 12:24] (当前版本) great_designer [E] |
||
|---|---|---|---|
| 行 409: | 行 409: | ||
| </hidden> | </hidden> | ||
| - | ======B====== | + | =====B===== |
| 储存斜率用了两种做法。开longlong那个TLE掉了,double那个WA了,实在无语…… | 储存斜率用了两种做法。开longlong那个TLE掉了,double那个WA了,实在无语…… | ||
| 行 637: | 行 637: | ||
| 积分算法原来也不难,模拟就好了。反正要求精度不高…… | 积分算法原来也不难,模拟就好了。反正要求精度不高…… | ||
| + | =====E===== | ||
| + | |||
| + | 集合中可重复取数,求异或的最大值,集合大小很大。 | ||
| + | |||
| + | 有一个与FFT、NTT非常相似的东西叫FWT,比前两者简单,用于解决数组异或(不进位加法)卷积的问题。 | ||
| + | |||
| + | FWT和它的逆,将数组异或(不进位加法)的卷积变为了乘法。 | ||
| + | |||
| + | <hidden> | ||
| + | <code C> | ||
| + | |||
| + | #include<stdio.h> | ||
| + | |||
| + | int n,nans[1<<18],one[1<<18],ans[200005]; | ||
| + | |||
| + | void FWT(int *src,int t) | ||
| + | { | ||
| + | int sz; | ||
| + | for(sz = 2;sz <= 1<<18;sz<<=1) | ||
| + | { | ||
| + | int step = sz >> 1; | ||
| + | int i; | ||
| + | for(i = 0;i< 1<<18;i+=sz) | ||
| + | { | ||
| + | int j; | ||
| + | for(j = i;j < i+step;j++) | ||
| + | { | ||
| + | int a = src[j]; | ||
| + | int b = src[j+step]; | ||
| + | src[j] = a+b; | ||
| + | src[j+step] = a-b; | ||
| + | if(t==-1) | ||
| + | { | ||
| + | src[j]>>=1; | ||
| + | src[j+step]>>=1; | ||
| + | } | ||
| + | } | ||
| + | } | ||
| + | } | ||
| + | } | ||
| + | |||
| + | int main() | ||
| + | { | ||
| + | scanf("%d",&n); | ||
| + | int x; | ||
| + | int i; | ||
| + | for(i = 1;i<= n;i++) | ||
| + | { | ||
| + | scanf("%d",&x); | ||
| + | one[x]=1; | ||
| + | nans[x]=1; | ||
| + | if (x > ans[1]) | ||
| + | { | ||
| + | ans[1] = x; | ||
| + | } | ||
| + | } | ||
| + | FWT(one,1); | ||
| + | for(i = 2;i<= 20;i++) | ||
| + | { | ||
| + | FWT(nans,1); | ||
| + | int j; | ||
| + | for(j = 0;j < 1<<18;j++) | ||
| + | { | ||
| + | nans[j] = nans[j]*one[j]; | ||
| + | } | ||
| + | FWT(nans,-1); | ||
| + | for(j = 0;j < 1<<18;j++) | ||
| + | { | ||
| + | if (nans[j]) | ||
| + | { | ||
| + | nans[j] = 1; | ||
| + | } | ||
| + | } | ||
| + | for(j=(1<<18)-1;j>=0;j--) | ||
| + | { | ||
| + | if (nans[j]) | ||
| + | { | ||
| + | ans[i] = j; | ||
| + | break; | ||
| + | } | ||
| + | } | ||
| + | } | ||
| + | for(i = 21;i<= n;i++) | ||
| + | { | ||
| + | ans[i] = ans[i-2]; | ||
| + | } | ||
| + | for(i = 1;i<= n;i++) | ||
| + | { | ||
| + | printf("%d ",ans[i]); | ||
| + | } | ||
| + | } | ||
| + | |||
| + | </code> | ||
| + | </hidden> | ||
| + | |||
| + | =====J===== | ||
| + | |||
| + | 对给定置换A开k次方,k是个大素数。 | ||
| + | |||
| + | 由群论知,对大素数k,k次方运算是一一映射,所以实质是个求数论倒数的运算。 | ||
| + | |||
| + | 由于模不是素数,用费马欧拉定理不方便,只能改用一次不定方程的扩展来求逆。 | ||
| + | |||
| + | <hidden> | ||
| + | <code C++> | ||
| + | |||
| + | #include<stdio.h> | ||
| + | |||
| + | #include<vector> | ||
| + | |||
| + | using namespace std; | ||
| + | |||
| + | long long extgcd(long long a,long long b,long long& u,long long& v) | ||
| + | { | ||
| + | long long d; | ||
| + | if(b==0) | ||
| + | { | ||
| + | d = a; | ||
| + | u=1,v=0; | ||
| + | } | ||
| + | else | ||
| + | { | ||
| + | d = extgcd(b,a%b,v,u); | ||
| + | v -= a/b*u; | ||
| + | } | ||
| + | return d; | ||
| + | } | ||
| + | |||
| + | int n,k,vis[100005]; | ||
| + | int P[100005],ans[100005],a[100005],tmp[100005],ttt[100005]; | ||
| + | |||
| + | int main() | ||
| + | { | ||
| + | scanf("%d%d",&n,&k); | ||
| + | int i; | ||
| + | for(i=1;i<=n;i++) | ||
| + | { | ||
| + | scanf("%d",&a[i]); | ||
| + | } | ||
| + | for(i=1;i<=n;i++) | ||
| + | { | ||
| + | if(!vis[i]) | ||
| + | { | ||
| + | vis[i] = 1; | ||
| + | vector<int> pos; | ||
| + | int u = a[i],len = 1;pos.push_back(i); | ||
| + | while(u!=i) | ||
| + | { | ||
| + | len++; | ||
| + | vis[u] = 1;pos.push_back(u); | ||
| + | u = a[u]; | ||
| + | } | ||
| + | long long x,y; | ||
| + | extgcd(k,len,x,y); | ||
| + | x = (x%len+len)%len; | ||
| + | int j; | ||
| + | for(j=1;j<=len;j++) | ||
| + | { | ||
| + | ans[pos[j-1]] = pos[(j-1+x)%len]; | ||
| + | } | ||
| + | } | ||
| + | } | ||
| + | for(i=1;i<=n;i++) | ||
| + | { | ||
| + | printf("%d ",ans[i]); | ||
| + | } | ||
| + | return 0; | ||
| + | } | ||
| + | |||
| + | </code> | ||
| + | </hidden> | ||