这里会显示出您选择的修订版和当前版本之间的差别。
| 后一修订版 | 前一修订版 | ||
|
2020-2021:teams:wangzai_milk:20200718比赛记录 [2020/07/18 23:59] wzx27 |
2020-2021:teams:wangzai_milk:20200718比赛记录 [2020/07/23 20:44] (当前版本) wzx27 |
||
|---|---|---|---|
| 行 7: | 行 7: | ||
| //O 在比赛中通过 Ø 赛后通过 ! 尝试了但是失败了 - 没有尝试// | //O 在比赛中通过 Ø 赛后通过 ! 尝试了但是失败了 - 没有尝试// | ||
| + | |||
| + | **比赛时间** | ||
| + | |||
| + | 2020-07-18 12:00-17:00 | ||
| + | |||
| + | |||
| + | |||
| + | ===== 题解 ===== | ||
| + | ==== A - Clam and Fish ==== | ||
| + | |||
| + | 依次经过 $n$ 个格子,每个格子上可能有 $\text{fish}$ 或 $\text{clam}$。 | ||
| + | |||
| + | 每个格子上可以下面的选一个操作: | ||
| + | |||
| + | 如果有 $\text{clam}$,可以制作一个鱼饵 | ||
| + | |||
| + | 如果有 $\text{fish}$,可以得到一条鱼 | ||
| + | |||
| + | 消耗一个鱼饵获得一条鱼 | ||
| + | |||
| + | 什么事都不做 | ||
| + | |||
| + | 显然有鱼的位置选操作三。剩下的有能制作鱼饵就制作鱼饵,否则就用鱼饵捕鱼。最后加上剩下鱼饵的二分之一。 | ||
| + | |||
| + | <hidden code> <code cpp> | ||
| + | #include<bits/stdc++.h> | ||
| + | #define ALL(x) (x).begin(),(x).end() | ||
| + | #define ll long long | ||
| + | #define ull unsigned long long | ||
| + | #define pii_ pair<int,int> | ||
| + | #define mp_ make_pair | ||
| + | #define pb push_back | ||
| + | #define fi first | ||
| + | #define se second | ||
| + | #define rep(i,a,b) for(int i=(a);i<=(b);i++) | ||
| + | #define per(i,a,b) for(int i=(a);i>=(b);i--) | ||
| + | #define show1(a) cout<<#a<<" = "<<a<<endl | ||
| + | #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl | ||
| + | using namespace std; | ||
| + | const ll INF = 1LL<<60; | ||
| + | const int inf = 1<<30; | ||
| + | const int maxn = 2e6+5; | ||
| + | inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} | ||
| + | |||
| + | char s[maxn]; | ||
| + | int main() | ||
| + | { | ||
| + | fastio(); | ||
| + | int _; char x; | ||
| + | for(cin>>_;_;_--){ | ||
| + | int n; cin>>n; | ||
| + | cin>>s+1; | ||
| + | int ans = 0,cnt = 0; | ||
| + | rep(i,1,n){ | ||
| + | if(s[i]=='0'){ | ||
| + | if(cnt) ans++,cnt--; | ||
| + | }else if(s[i]=='1'){ | ||
| + | cnt++; | ||
| + | } | ||
| + | else ans++; | ||
| + | } | ||
| + | ans += cnt/2; | ||
| + | cout<<ans<<endl; | ||
| + | } | ||
| + | return 0; | ||
| + | } | ||
| + | |||
| + | </code> </hidden> | ||
| + | \\ | ||
| + | |||
| + | ==== B - Classical String Problem ==== | ||
| + | |||
| + | 题意:两种操作,把字符串最后x个接到前面,把字符串最前面x个接到后面。最后询问一次当前字符串。 | ||
| + | |||
| + | 题解:相当于把字符串搞成一个环,有一个指针指着开头,每次操作相当于动指针,就每次加减移动字符数然后模长度就好了。 | ||
| + | |||
| + | <hidden><code cpp> | ||
| + | #include <bits/stdc++.h> | ||
| + | using namespace std; | ||
| + | const int N = 2e6+5; | ||
| + | char s[N]; | ||
| + | int main() | ||
| + | { | ||
| + | int Q; | ||
| + | scanf("%s",s); | ||
| + | scanf("%d",&Q); | ||
| + | char op[3]; | ||
| + | int n = strlen(s); | ||
| + | int st = 0,x; | ||
| + | for (int i = 1;i<= Q;i++) { | ||
| + | scanf("%s%d",op,&x); | ||
| + | if (op[0] == 'A') { | ||
| + | x--; | ||
| + | int pos = ((st+x)%n+n)%n; | ||
| + | printf("%c\n",s[pos]); | ||
| + | } else { | ||
| + | st = ((st+x)%n+n)%n; | ||
| + | } | ||
| + | } | ||
| + | return 0; | ||
| + | } | ||
| + | </code></hidden> | ||
| + | \\ | ||
| + | ==== C - Operation Love ==== | ||
| + | |||
| + | 题面中给出右手图形,左手与之对称。之后询问给定图形是右手还是左手(可以平移旋转,可能顺/逆时针给出点)。 | ||
| + | |||
| + | 找到长度 $9$ 和 $6$ 的边,叉集判断顺逆时针关系即可。 | ||
| + | |||
| + | <hidden><code cpp> | ||
| + | #include<bits/stdc++.h> | ||
| + | #define pii pair<int,int> | ||
| + | #define ll long long | ||
| + | using namespace std; | ||
| + | #define eps 1e-4 | ||
| + | struct Node | ||
| + | { | ||
| + | double x,y; | ||
| + | Node(double x=0,double y=0):x(x),y(y){} | ||
| + | Node operator -(Node a){return Node(x-a.x,y-a.y);} | ||
| + | }p[22]; | ||
| + | int dcmp(double x) | ||
| + | { | ||
| + | if(x<-eps)return -1; | ||
| + | return x>eps; | ||
| + | } | ||
| + | double sqr(double x){return x*x;} | ||
| + | double dissqr(Node a,Node b){return sqr(a.x-b.x)+sqr(a.y-b.y);} | ||
| + | double Cross(Node a,Node b){return a.x*b.y-a.y*b.x;} | ||
| + | int main() | ||
| + | { | ||
| + | int t; | ||
| + | scanf("%d",&t); | ||
| + | while(t--) | ||
| + | { | ||
| + | for(int i=0;i<20;i++)scanf("%lf%lf",&p[i].x,&p[i].y); | ||
| + | int j=0; | ||
| + | for(int i=0;i<20;i++) | ||
| + | { | ||
| + | if(dcmp(dissqr(p[i],p[(i+1)%20])-81)==0) | ||
| + | {j=i;break;} | ||
| + | } | ||
| + | if(dcmp(dissqr(p[(j+2)%20],p[(j+1)%20])-36)==0) | ||
| + | { | ||
| + | if(Cross(p[(j+2)%20]-p[(j+1)%20],p[j]-p[(j+1)%20])<0)puts("right"); | ||
| + | else puts("left"); | ||
| + | } | ||
| + | else | ||
| + | { | ||
| + | if(Cross(p[(j-1+20)%20]-p[j],p[(j+1)%20]-p[j])<0)puts("right"); | ||
| + | else puts("left"); | ||
| + | } | ||
| + | } | ||
| + | return 0; | ||
| + | } | ||
| + | </code></hidden> | ||
| + | \\ | ||
| + | ==== D - Points Construction Problem ==== | ||
| + | |||
| + | 题意:给一个坐标轴,在整数点上染色,一开始所有的都是白色,要求染n个,使得有m对相邻的点颜色不同。 | ||
| + | |||
| + | 题解:构造,首先可以发现只有m为偶数的时候有方案,然后对于一个新染色点,可能多4对,2对或0对,然后枚举多4对的有几个点,2对的有几个点,算出0对的有几个点,然后先一行空一格染一个,染4对的,然后再最后一个4对的上侧和右侧增加2对的,看剩下的0对的能不能被完全放进这个L形里。可以就可以,不行就没了。 | ||
| + | |||
| + | <hidden><code cpp> | ||
| + | #include <bits/stdc++.h> | ||
| + | using namespace std; | ||
| + | const int N = 55; | ||
| + | int ans[N][2]; | ||
| + | int n,m; | ||
| + | int main() | ||
| + | { | ||
| + | int cas; | ||
| + | scanf("%d",&cas); | ||
| + | while (cas--) { | ||
| + | int n,m; | ||
| + | scanf("%d%d",&n,&m); | ||
| + | int minans = 4*n; | ||
| + | for (int i = 1;i<= n;i++) { | ||
| + | int x=i;int y = n/x; | ||
| + | if (n > x*y) | ||
| + | minans=min(minans,2*(x+y+1)); | ||
| + | else minans = min(minans,2*(x+y)); | ||
| + | } | ||
| + | bool find = false; | ||
| + | for (int cnt4 = 1;cnt4<=n && !find;cnt4++) { | ||
| + | for (int cnt2 = 0;cnt2+cnt4<=n && !find;cnt2++) { | ||
| + | if (cnt2*2+cnt4*4!=m)continue; | ||
| + | int cnt0 = n-cnt4-cnt2; | ||
| + | int x = cnt2/2;int y = cnt2-x; | ||
| + | if (cnt0 <= x*y) { | ||
| + | find = true; | ||
| + | int tmp = 0; | ||
| + | for (int i = 1;i<= cnt4;i++) | ||
| + | ans[++tmp][0] = i<<1; | ||
| + | for (int i = 1;i<= x;i++) { | ||
| + | tmp++; | ||
| + | ans[tmp][0] = ans[cnt4][0]+i; | ||
| + | ans[tmp][1] = ans[cnt4][1]; | ||
| + | } | ||
| + | for (int i = 1;i<= y;i++) { | ||
| + | tmp++; | ||
| + | ans[tmp][0] = ans[cnt4][0]; | ||
| + | ans[tmp][1] = ans[cnt4][1]+i; | ||
| + | } | ||
| + | for (int i = 0;i< cnt0;i++) { | ||
| + | int tx = i%x+1,ty = i/x+1; | ||
| + | tmp++; | ||
| + | ans[tmp][0] = ans[cnt4][0]+tx; | ||
| + | ans[tmp][1] = ans[cnt4][1]+ty; | ||
| + | } | ||
| + | } | ||
| + | } | ||
| + | } | ||
| + | if (find) { | ||
| + | printf("Yes\n"); | ||
| + | for (int i = 1;i<= n;i++) | ||
| + | printf("%d %d\n",ans[i][0],ans[i][1]); | ||
| + | } else { | ||
| + | printf("No\n"); | ||
| + | } | ||
| + | } | ||
| + | return 0; | ||
| + | } | ||
| + | </code></hidden> | ||
| + | \\ | ||
| + | ==== F - Fraction Construction Problem ==== | ||
| + | |||
| + | 给 $1 \le a,b \le 2e6$,问是否存在 $1 \le c,d,e,f \le 4e12$ 且 $d,f \lt b$,使得 $\frac cd - \frac ef = \frac ab$。 | ||
| + | |||
| + | 分类讨论一下,如果 $a$ 和 $b$ 不互质可以很容易构造出来;如果互质,分解 $b$,如果 $b$ 只有一种质因子则不存在,否则令 $d$ 和 $f$ 为 $b$ 的两个互质的因数,然后通分,分子就是个拓欧。 | ||
| + | |||
| + | <hidden code> <code cpp> | ||
| + | #pragma GCC optimize(2) | ||
| + | #pragma GCC optimize(3,"Ofast","inline") | ||
| + | #include<bits/stdc++.h> | ||
| + | #define ALL(x) (x).begin(),(x).end() | ||
| + | #define ll long long | ||
| + | #define ull unsigned long long | ||
| + | #define pii_ pair<int,int> | ||
| + | #define mp_ make_pair | ||
| + | #define pb push_back | ||
| + | #define fi first | ||
| + | #define se second | ||
| + | #define rep(i,a,b) for(int i=(a);i<=(b);i++) | ||
| + | #define per(i,a,b) for(int i=(a);i>=(b);i--) | ||
| + | #define show1(a) cout<<#a<<" = "<<a<<endl | ||
| + | #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl | ||
| + | using namespace std; | ||
| + | const ll INF = 1LL<<60; | ||
| + | const int inf = 1<<30; | ||
| + | const int maxn = 2e6+5; | ||
| + | const ll B = 4e12; | ||
| + | inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} | ||
| + | |||
| + | bool vis[maxn]; | ||
| + | vector<int> prime; | ||
| + | inline ll gcd(ll a,ll b) {return b==0?a:gcd(b,a%b);} | ||
| + | inline ll exgcd(ll a,ll b,ll &x,ll &y) | ||
| + | { | ||
| + | ll d; | ||
| + | if(!b) d=a,x=1,y=0; | ||
| + | else {d=exgcd(b,a%b,y,x);y-=a/b*x;} | ||
| + | return d; | ||
| + | } | ||
| + | void init() | ||
| + | { | ||
| + | int n = 2e6; | ||
| + | rep(i,2,n){ | ||
| + | if(!vis[i]) prime.pb(i); | ||
| + | for(ll j=(ll)i*i;j<=n;j+=i) vis[j] = 1; | ||
| + | } | ||
| + | } | ||
| + | int main() | ||
| + | { | ||
| + | int _; init(); | ||
| + | ll a,b,c,d,e,f; | ||
| + | for(scanf("%d",&_);_;_--){ | ||
| + | scanf("%lld%lld",&a,&b); | ||
| + | if(b==1){ | ||
| + | printf("-1 -1 -1 -1\n"); | ||
| + | }else{ | ||
| + | ll k = gcd(a,b); | ||
| + | if(k > 1){ | ||
| + | a/=k,b/=k; | ||
| + | d = b,f = b; | ||
| + | c = a+1,e = 1; | ||
| + | printf("%lld %lld %lld %lld\n",c,d,e,f); continue; | ||
| + | }else{ | ||
| + | if(!vis[b]){ // ab互质且b为质数 | ||
| + | printf("-1 -1 -1 -1\n"); continue; | ||
| + | } | ||
| + | for(int x:prime){ | ||
| + | if(b%x==0){ | ||
| + | d = 1; | ||
| + | while(b%x==0) d*=x,b/=x; | ||
| + | break; | ||
| + | } | ||
| + | } | ||
| + | if(b==1){ // 只有一种质因子 | ||
| + | printf("-1 -1 -1 -1\n"); continue; | ||
| + | } | ||
| + | f = b; | ||
| + | exgcd(f,d,c,e); | ||
| + | if(c<0){ | ||
| + | ll k = abs(c)/d+1; | ||
| + | c += k*d,e -= k*f; | ||
| + | } | ||
| + | printf("%lld %lld %lld %lld\n",c*a,d,-e*a,f); | ||
| + | } | ||
| + | } | ||
| + | } | ||
| + | return 0; | ||
| + | } | ||
| + | </code> </hidden> | ||
| + | \\ | ||
| + | |||
| + | ==== G - Operating on a Graph ==== | ||
| + | |||
| + | 每个点初始自己一组, $q$ 个操作,每次将所有与 $o_i$ 组有连边的组并入该组,问最后每个点各属于哪个组。 | ||
| + | |||
| + | 并查集搞一搞即可,每次将准备并入的组连出去的边与 $G[o_i]$ 合并,注意vector合并时小的插入大的。 | ||
| + | |||
| + | <hidden><code cpp> | ||
| + | #include<bits/stdc++.h> | ||
| + | #define pii pair<int,int> | ||
| + | #define ll long long | ||
| + | #define pb push_back | ||
| + | using namespace std; | ||
| + | const int N=8e5+10; | ||
| + | vector<int>G[N],s; | ||
| + | int read() | ||
| + | { | ||
| + | int x=0,f=1;char c=getchar(); | ||
| + | while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();} | ||
| + | while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();} | ||
| + | return x*f; | ||
| + | } | ||
| + | int father[N]; | ||
| + | int find(int x){return x==father[x]?x:father[x]=find(father[x]);} | ||
| + | int main() | ||
| + | { | ||
| + | int t=read(); | ||
| + | while(t--) | ||
| + | { | ||
| + | int n=read(),m=read(); | ||
| + | for(int i=0;i<n;i++)vector<int>().swap(G[i]),father[i]=i; | ||
| + | for(int i=0;i<m;i++) | ||
| + | { | ||
| + | int x=read(),y=read(); | ||
| + | G[x].pb(y),G[y].pb(x); | ||
| + | } | ||
| + | int q=read(); | ||
| + | for(int i=1;i<=q;i++) | ||
| + | { | ||
| + | int u=read(); | ||
| + | if(find(u)!=u)continue; | ||
| + | for(int v:G[u]) | ||
| + | { | ||
| + | int fv=find(v); | ||
| + | if(fv!=u) | ||
| + | { | ||
| + | father[fv]=u; | ||
| + | if(s.size()<G[fv].size())swap(s,G[fv]); | ||
| + | s.insert(s.end(),G[fv].begin(),G[fv].end()); | ||
| + | vector<int>().swap(G[fv]); | ||
| + | } | ||
| + | } | ||
| + | if(s.size()>G[u].size())swap(s,G[u]); | ||
| + | G[u].insert(G[u].end(),s.begin(),s.end()); | ||
| + | vector<int>().swap(s); | ||
| + | } | ||
| + | for(int i=0;i<n;i++)printf("%d ",find(i)); | ||
| + | puts(""); | ||
| + | } | ||
| + | return 0; | ||
| + | } | ||
| + | </code></hidden> | ||
| + | \\ | ||
| + | |||
| + | ==== L - Problem L is the Only Lovely Problem ==== | ||
| + | |||
| + | 签到水题。 | ||
| + | |||
| + | <hidden><code cpp> | ||
| + | #include<bits/stdc++.h> | ||
| + | using namespace std; | ||
| + | char s[505],s1[505]="lovely"; | ||
| + | int main() | ||
| + | { | ||
| + | cin>>s; | ||
| + | for(int i=0;s1[i];i++) | ||
| + | { | ||
| + | if(s[i]>='A'&&s[i]<='Z')s[i]=s[i]-'A'+'a'; | ||
| + | if(s1[i]!=s[i]){puts("ugly");return 0;} | ||
| + | } | ||
| + | puts("lovely"); | ||
| + | return 0; | ||
| + | } | ||
| + | </code></hidden> | ||
| + | \\ | ||
| + | ===== 比赛总结与反思 ===== | ||
| + | |||