这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
2020-2021:teams:wangzai_milk:20200808比赛记录 [2020/08/13 19:53] infinity37 [F - Groundhog Looking Dowdy] |
2020-2021:teams:wangzai_milk:20200808比赛记录 [2020/08/14 16:23] (当前版本) wzx27 |
||
---|---|---|---|
行 13: | 行 13: | ||
===== 题解 ===== | ===== 题解 ===== | ||
+ | |||
+ | ==== A - Groundhog and 2-Power Representation ==== | ||
+ | |||
+ | 用栈模拟一下,并且用 $\text{py}$ 水一下高精度 | ||
+ | <hidden code> <code cpp> | ||
+ | s = input().strip() | ||
+ | |||
+ | stack = [] | ||
+ | |||
+ | ans = 0 | ||
+ | |||
+ | for ch in s: | ||
+ | if ch == ')': | ||
+ | now = 0 | ||
+ | while 1: | ||
+ | r = stack[-1] | ||
+ | stack.pop() | ||
+ | if r == '(': | ||
+ | break | ||
+ | if r != '+': | ||
+ | now += int(r) | ||
+ | stack.pop() | ||
+ | stack.append(2**now) | ||
+ | |||
+ | else: | ||
+ | stack.append(ch) | ||
+ | for each in stack: | ||
+ | if each != '+': | ||
+ | ans += int(each) | ||
+ | print(ans) | ||
+ | </code> </hidden> | ||
+ | \\ | ||
==== F - Groundhog Looking Dowdy ==== | ==== F - Groundhog Looking Dowdy ==== | ||
行 59: | 行 91: | ||
\\ | \\ | ||
+ | ==== G - Groundhog Chasing Death ==== | ||
+ | |||
+ | 求 $\prod_{i=a}^b \prod_{j=c}^d gcd(x^i,y^j)$。 | ||
+ | |||
+ | 只有 $x,y$ 的公共质因子会有贡献,枚举这些质因子,然后枚举 $i$,可以用等差数列求出 $j$ 的贡献。 | ||
+ | |||
+ | <hidden code> <code cpp> | ||
+ | #pragma GCC optimize(2) | ||
+ | #pragma GCC optimize(3,"Ofast","inline") | ||
+ | #include<bits/stdc++.h> | ||
+ | #define ALL(x) (x).begin(),(x).end() | ||
+ | #define ll long long | ||
+ | #define db double | ||
+ | #define ull unsigned long long | ||
+ | #define pii_ pair<int,int> | ||
+ | #define mp_ make_pair | ||
+ | #define pb push_back | ||
+ | #define fi first | ||
+ | #define se second | ||
+ | #define rep(i,a,b) for(int i=(a);i<=(b);i++) | ||
+ | #define per(i,a,b) for(int i=(a);i>=(b);i--) | ||
+ | #define show1(a) cout<<#a<<" = "<<a<<endl | ||
+ | #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl | ||
+ | using namespace std; | ||
+ | const ll INF = 1LL<<60; | ||
+ | const int inf = 1<<30; | ||
+ | const int maxn = 1e5+5; | ||
+ | const int M = 998244353; | ||
+ | inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} | ||
+ | |||
+ | ll qpow(ll a,ll b) {ll s = 1;while(b){if(b&1)s=(s*a)%M;a=(a*a)%M;b>>=1; }return s;} | ||
+ | vector<int> cop,X,Y; | ||
+ | int main() | ||
+ | { | ||
+ | fastio(); | ||
+ | ll a,b,c,d,x,y; | ||
+ | cin>>a>>b>>c>>d>>x>>y; | ||
+ | //if(!a) a++; if(!b) b++; | ||
+ | //if(!c) c++; if(!d) d++; | ||
+ | int sqn = 1e5; | ||
+ | rep(i,2,sqn){ | ||
+ | int t1 = 0,t2 = 0; | ||
+ | if(i > x && i > y) break; | ||
+ | while(x%i==0) x/=i,t1++; | ||
+ | while(y%i==0) y/=i,t2++; | ||
+ | if(t1 && t2){ | ||
+ | cop.pb(i); | ||
+ | X.pb(t1); | ||
+ | Y.pb(t2); | ||
+ | } | ||
+ | } | ||
+ | if(x>1 && y>1 && x==y){ | ||
+ | cop.pb(x); | ||
+ | X.pb(1); | ||
+ | Y.pb(1); | ||
+ | } | ||
+ | int sz = X.size(); | ||
+ | ll ans = 1; | ||
+ | ll M1 = M-1; | ||
+ | rep(k,0,sz-1){ | ||
+ | ll u = X[k],v = Y[k]; | ||
+ | ll sum = 0; | ||
+ | rep(i,a,b){ | ||
+ | ll un = u*i; | ||
+ | ll lim = un / v; | ||
+ | if(lim>=d){ | ||
+ | sum += (c+d)*(d-c+1)/2 * v; | ||
+ | sum %= M1; | ||
+ | }else if(lim<c){ | ||
+ | sum += (d-c+1) * un; | ||
+ | sum %= M1; | ||
+ | }else{ | ||
+ | sum += (c+lim)*(lim-c+1)/2 * v + (d-lim)*un; | ||
+ | sum %=M1; | ||
+ | } | ||
+ | } | ||
+ | ans = ans * qpow(cop[k],sum) % M; | ||
+ | } | ||
+ | cout<<ans<<endl; | ||
+ | return 0; | ||
+ | } | ||
+ | /* | ||
+ | 0 3000000 0 3000000 223092870 223092870 | ||
+ | */ | ||
+ | </code> </hidden> | ||
+ | \\ | ||
==== K - The Flee Plan of Groundhog ==== | ==== K - The Flee Plan of Groundhog ==== | ||