这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
2020-2021:teams:wangzai_milk:fft_的一些奇妙用法 [2020/08/21 12:09] wzx27 |
2020-2021:teams:wangzai_milk:fft_的一些奇妙用法 [2020/08/21 13:23] (当前版本) wzx27 |
||
---|---|---|---|
行 95: | 行 95: | ||
==== 字符串匹配 ==== | ==== 字符串匹配 ==== | ||
+ | 先考虑如何用 $\text{FFT}$ 做和 $\text{KMP}$ 一样的事: | ||
+ | 记 $s$ 串为长度为 $m$ 的模式串,$t$ 串为长度为 $n$ 的文本串,下标均从 $0$ 开始。目标是找出所有 $x$ 满足 $\forall i\in [0,m),t_{x-m+i+1} = s_i$。 | ||
+ | 上述条件可用一个式子来表示 $\sum _{i=0}^{m-1} (s_i - t_{x-m+i+1})^2 = 0$,展开后为 $\sum _{i=0}^{m-1} s_i^2 + t_{x-m+i+1}^2 - 2\cdot s_i\cdot t_{x-m+i+1}$。 | ||
+ | |||
+ | 两个平方项都可以通过前缀和得到。乘积项转换一下就会变成一个卷积的形式:把 $s$ 串翻转一下得到 $rs$ 串,于是乘积项就是 $\sum _{i=0}^{m-1} 2\cdot rs_{m-i-1} \cdot t_{x-m+i+1} = \sum _{i=0}^{m-1} 2\cdot rs_i \cdot t_{x-i}$。所以这里就可以用$\text{FFT}$处理的到。 | ||
+ | |||
+ | 最后的判断条件:卷积之后的多项式为 $f(x)$,在 $t$ 串的 $x$ 位置匹配当且仅当 $f(x) + pres[m-1] + pret[x] - pret[x-m-2] = 0$。总复杂度为 $O(nlogn)$。 | ||
+ | |||
+ | 虽然 $\text{FFT}$ 多了一个 $log$ 的复杂度,但有些匹配是 $\text{KMP}$ 无法做但是 $\text{FFT}$ 可以做。 | ||
+ | |||
+ | [[https://www.luogu.com.cn/problem/P4173|P4173]] | ||
+ | |||
+ | 在正常匹配的基础上扩大了字符集的范围,多了一种 $*$ 字符(可以匹配任何字符)。这样之后就不能用 $\text{KMP}$ 了,因为 $\text{KMP}$ 需要满足一种等价关系,而通配符 $*$ 的存在就不满足等价关系:$a = * 且 b = *$ 但没有传递性 $a = b$。 | ||
+ | |||
+ | 考虑用上述一样的方法来构造多项式函数 $\sum_{i=0}^{m-1} (s_i - t_{x-m+i+1})^2 \cdot s_i \cdot t_i $。这样就可以得到答案了。 | ||
+ | |||
+ | <hidden code> <code cpp> | ||
+ | |||
+ | #pragma GCC optimize(2) | ||
+ | #pragma GCC optimize(3,"Ofast","inline") | ||
+ | |||
+ | #include<bits/stdc++.h> | ||
+ | #define ALL(x) (x).begin(),(x).end() | ||
+ | #define ll long long | ||
+ | #define db double | ||
+ | #define ull unsigned long long | ||
+ | #define pii_ pair<int,int> | ||
+ | #define mp_ make_pair | ||
+ | #define pb push_back | ||
+ | #define fi first | ||
+ | #define se second | ||
+ | #define rep(i,a,b) for(int i=(a);i<=(b);i++) | ||
+ | #define per(i,a,b) for(int i=(a);i>=(b);i--) | ||
+ | #define show1(a) cout<<#a<<" = "<<a<<endl | ||
+ | #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl | ||
+ | using namespace std; | ||
+ | const ll INF = 1LL<<60; | ||
+ | const int inf = 1<<30; | ||
+ | const int maxn = 12e5+5; | ||
+ | const int M = 998244353; | ||
+ | inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} | ||
+ | ll qpow(ll a,ll b) {ll s=1;while(b){if(b&1)s=s*a%M;a=a*a%M;b>>=1;}return s;} | ||
+ | int rev[maxn]; | ||
+ | ll A[maxn],B[maxn],C[maxn]; | ||
+ | void trans(ll a[],int lim,int type) | ||
+ | { | ||
+ | rep(i,1,lim-1) if(i<rev[i]) swap(a[i],a[rev[i]]); | ||
+ | for(int mid=1;mid<lim;mid<<=1){ | ||
+ | ll wn = qpow(3,(M-1)/mid/2); | ||
+ | if(type==-1) wn = qpow(wn,M-2); | ||
+ | for(int R=mid<<1,j=0;j<lim;j+=R){ | ||
+ | ll w = 1; | ||
+ | for(int k=0;k<mid;k++,w=w*wn%M){ | ||
+ | ll x=a[j+k],y=w*a[j+mid+k]%M; | ||
+ | a[j+k] = (x+y)%M; | ||
+ | a[j+mid+k] = (x-y+M)%M; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | if(type==-1){ | ||
+ | ll inv = qpow(lim,M-2); | ||
+ | rep(i,0,lim) a[i] = a[i]*inv%M; | ||
+ | } | ||
+ | } | ||
+ | char t[maxn],s[maxn]; | ||
+ | int idt[maxn],ids[maxn]; | ||
+ | int main() | ||
+ | { | ||
+ | fastio(); | ||
+ | int n,m; cin>>n>>m; | ||
+ | cin>>t>>s; | ||
+ | reverse(t,t+n); | ||
+ | rep(i,0,n-1) idt[i] = t[i]=='*'?0:t[i]-'a'+1; | ||
+ | rep(i,0,m-1) ids[i] = s[i]=='*'?0:s[i]-'a'+1; | ||
+ | |||
+ | int lim = 1,l = 0; | ||
+ | while(lim<=n+m) lim<<=1,l++; | ||
+ | rep(i,1,lim-1) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(l-1)); | ||
+ | |||
+ | rep(i,0,n-1){ | ||
+ | A[i] = idt[i]; | ||
+ | } | ||
+ | rep(i,0,m-1){ | ||
+ | B[i] = ids[i]*ids[i]*ids[i]; | ||
+ | } | ||
+ | trans(A,lim,1);trans(B,lim,1); | ||
+ | rep(i,0,lim) C[i] = C[i] + A[i] * B[i]; | ||
+ | |||
+ | memset(A,0,sizeof(A)); | ||
+ | memset(B,0,sizeof(B)); | ||
+ | rep(i,0,n-1){ | ||
+ | A[i] = idt[i]*idt[i]; | ||
+ | } | ||
+ | rep(i,0,m-1){ | ||
+ | B[i] = ids[i]*ids[i]; | ||
+ | } | ||
+ | trans(A,lim,1);trans(B,lim,1); | ||
+ | rep(i,0,lim) C[i] = C[i] - 2LL * A[i] * B[i]; | ||
+ | |||
+ | memset(A,0,sizeof(A)); | ||
+ | memset(B,0,sizeof(B)); | ||
+ | rep(i,0,n-1){ | ||
+ | A[i] = idt[i]*idt[i]*idt[i]; | ||
+ | } | ||
+ | rep(i,0,m-1){ | ||
+ | B[i] = ids[i]; | ||
+ | } | ||
+ | trans(A,lim,1);trans(B,lim,1); | ||
+ | rep(i,0,lim) C[i] = C[i] + A[i] * B[i]; | ||
+ | |||
+ | trans(C,lim,-1); | ||
+ | |||
+ | vector<int> ans; | ||
+ | rep(i,n-1,m-1){ | ||
+ | if(C[i] == 0) ans.pb(i-n+2); | ||
+ | } | ||
+ | cout<<ans.size()<<endl; | ||
+ | for(int x:ans) cout<<x<<" "; | ||
+ | return 0; | ||
+ | } | ||
+ | </code> </hidden> | ||
+ | \\ | ||
+ | |||
+ | [[https://codeforces.com/problemset/problem/1334/G|CF1334G]] | ||
+ | |||
+ | 在普通匹配的基础上添加条件 $p(s_i) = t_i$ 时也算匹配。$p$ 是题目给的一个置换。 | ||
+ | |||
+ | 同样不满足传递性,因此只能用 $\text{FFT}$ 匹配。 | ||
+ | |||
+ | <hidden code> <code cpp> | ||
+ | #pragma GCC optimize(2) | ||
+ | #pragma GCC optimize(3,"Ofast","inline") | ||
+ | #include<bits/stdc++.h> | ||
+ | #define ALL(x) (x).begin(),(x).end() | ||
+ | #define ll long long | ||
+ | #define db double | ||
+ | #define ull unsigned long long | ||
+ | #define pii_ pair<int,int> | ||
+ | #define mp_ make_pair | ||
+ | #define pb push_back | ||
+ | #define fi first | ||
+ | #define se second | ||
+ | #define rep(i,a,b) for(int i=(a);i<=(b);i++) | ||
+ | #define per(i,a,b) for(int i=(a);i>=(b);i--) | ||
+ | #define show1(a) cout<<#a<<" = "<<a<<endl | ||
+ | #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl | ||
+ | using namespace std; | ||
+ | const ll INF = 1LL<<60; | ||
+ | const int inf = 1<<30; | ||
+ | const int maxn = 1e6+5; | ||
+ | const int M = 998244353; | ||
+ | inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} | ||
+ | ll qpow(ll a,ll b) {ll s=1;while(b){if(b&1)s=s*a%M;a=a*a%M;b>>=1;}return s;} | ||
+ | |||
+ | int rev[maxn]; | ||
+ | ll A[maxn],B[maxn],C[maxn],T4[maxn],val[30],p[30]; | ||
+ | char s[maxn],t[maxn]; | ||
+ | void trans(ll a[],int lim,int type) | ||
+ | { | ||
+ | rep(i,1,lim-1) if(i<rev[i]) swap(a[i],a[rev[i]]); | ||
+ | for(int mid=1;mid<lim;mid<<=1){ | ||
+ | ll wn = qpow(3,(M-1)/mid/2); | ||
+ | if(type==-1) wn = qpow(wn,M-2); | ||
+ | for(int R=mid<<1,j=0;j<lim;j+=R){ | ||
+ | ll w = 1; | ||
+ | for(int k=0;k<mid;k++,w=w*wn%M){ | ||
+ | ll x=a[j+k],y=w*a[j+mid+k]%M; | ||
+ | a[j+k] = (x+y)%M; | ||
+ | a[j+mid+k] = (x-y+M)%M; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | if(type==-1){ | ||
+ | ll inv = qpow(lim,M-2); | ||
+ | rep(i,0,lim) a[i] = a[i]*inv%M; | ||
+ | } | ||
+ | } | ||
+ | void add(ll &x,ll y) | ||
+ | { | ||
+ | x += y; | ||
+ | if(x>=M) x-=M; | ||
+ | } | ||
+ | bool check(int k) | ||
+ | { | ||
+ | rep(i,0,k) rep(j,i+1,k) if(val[i]==val[j]) return 0; | ||
+ | return 1; | ||
+ | } | ||
+ | int main() | ||
+ | { | ||
+ | fastio();srand(time(NULL)); | ||
+ | rep(i,0,25){ //val[i] = i; | ||
+ | val[i] = rand()%M; | ||
+ | while(!check(i)) add(val[i],1); | ||
+ | } | ||
+ | rep(i,0,25) cin>>p[i],p[i]=val[p[i]-1]; | ||
+ | cin>>s>>t; | ||
+ | int m = strlen(s),n = strlen(t); | ||
+ | rep(i,0,m-1) s[i] -= 'a'; | ||
+ | rep(i,0,n-1) t[i] -= 'a'; | ||
+ | reverse(s,s+m); | ||
+ | |||
+ | int lim = 1,l = 0; | ||
+ | while(lim <= n+m) lim<<=1,l++; | ||
+ | rep(i,1,lim-1) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(l-1)); | ||
+ | |||
+ | rep(i,0,m-1) A[i] = (-2LL*val[s[i]]*val[s[i]]%M*p[s[i]]%M - 2LL*val[s[i]]*p[s[i]]%M*p[s[i]]%M)%M; | ||
+ | rep(i,0,n-1) B[i] = val[t[i]]; | ||
+ | trans(A,lim,1);trans(B,lim,1); | ||
+ | rep(i,0,lim) add(C[i],A[i]*B[i]%M); | ||
+ | |||
+ | memset(A,0,sizeof(A));memset(B,0,sizeof(B)); | ||
+ | rep(i,0,m-1) A[i] = (1LL*val[s[i]]*val[s[i]]%M + 4LL*val[s[i]]*p[s[i]]%M + 1LL*p[s[i]]*p[s[i]]%M)%M; | ||
+ | rep(i,0,n-1) B[i] = val[t[i]] * val[t[i]] % M; | ||
+ | trans(A,lim,1);trans(B,lim,1); | ||
+ | rep(i,0,lim) add(C[i],A[i]*B[i]%M); | ||
+ | |||
+ | memset(A,0,sizeof(A));memset(B,0,sizeof(B)); | ||
+ | rep(i,0,m-1) A[i] = (-2LL*val[s[i]] -2LL*p[s[i]])%M; | ||
+ | rep(i,0,n-1) B[i] = val[t[i]] * val[t[i]] %M * val[t[i]] %M; | ||
+ | trans(A,lim,1);trans(B,lim,1); | ||
+ | rep(i,0,lim) add(C[i],A[i]*B[i]%M); | ||
+ | |||
+ | trans(C,lim,-1); | ||
+ | |||
+ | rep(i,0,n-1){ | ||
+ | if(i==0) T4[i] = val[t[i]]*val[t[i]]%M*val[t[i]]%M*val[t[i]]%M; | ||
+ | else T4[i] = (T4[i-1] + val[t[i]]*val[t[i]]%M*val[t[i]]%M*val[t[i]]%M)%M; | ||
+ | } | ||
+ | |||
+ | ll sps = 0; | ||
+ | rep(i,0,m-1){ | ||
+ | add(sps,val[s[i]] * val[s[i]] %M *p[s[i]]%M *p[s[i]]%M); | ||
+ | } | ||
+ | |||
+ | rep(i,m-1,n-1){ | ||
+ | ll res = (T4[i] - (i==m-1?0:T4[i-m]) + C[i] + sps)%M; //show1(res); | ||
+ | if(res==0) cout<<1; | ||
+ | else cout<<0; | ||
+ | } | ||
+ | |||
+ | return 0; | ||
+ | } | ||
+ | </code> </hidden> | ||
+ | \\ |