后一修订版 | 前一修订版 | ||
2020-2021:teams:wangzai_milk:matrix_exponentiation [2020/08/12 01:44] wzx27 创建 |
2020-2021:teams:wangzai_milk:matrix_exponentiation [2020/08/12 01:58] (当前版本) wzx27 |
||
---|---|---|---|
行 1: | 行 1: | ||
$\text{GYM}$ 链接:[[https://codeforces.com/gym/102644|Matrix Exponentiation]] | $\text{GYM}$ 链接:[[https://codeforces.com/gym/102644|Matrix Exponentiation]] | ||
- | ==== F ==== | + | ==== F - Min Path ==== |
给一个无向图,求包含 $k$ 条边的最小路径。 | 给一个无向图,求包含 $k$ 条边的最小路径。 | ||
行 83: | 行 83: | ||
} | } | ||
</code> </hidden> | </code> </hidden> | ||
+ | \\ | ||
+ | |||
+ | ==== G - Recurrence With Square ==== | ||
+ | |||
+ | 求序列 | ||
+ | |||
+ | $$a_i = c_1\cdot a_{i-1} + c_2\cdot a_{i-2} + \cdots + c_n\cdot a_{i-n} + p + i\cdot q + i^2 \cdot r$$ | ||
+ | |||
+ | 的第 $k$ 项,也就是归纳一般的线性递推式的矩阵构造方法。 | ||
+ | |||
+ | <hidden code> <code cpp> | ||
+ | /* | ||
+ | #pragma GCC optimize(2) | ||
+ | #pragma GCC optimize(3,"Ofast","inline") | ||
+ | */ | ||
+ | #include<bits/stdc++.h> | ||
+ | #define ALL(x) (x).begin(),(x).end() | ||
+ | #define ll long long | ||
+ | #define db double | ||
+ | #define ull unsigned long long | ||
+ | #define pii_ pair<int,int> | ||
+ | #define mp_ make_pair | ||
+ | #define pb push_back | ||
+ | #define fi first | ||
+ | #define se second | ||
+ | #define rep(i,a,b) for(int i=(a);i<=(b);i++) | ||
+ | #define per(i,a,b) for(int i=(a);i>=(b);i--) | ||
+ | #define show1(a) cout<<#a<<" = "<<a<<endl | ||
+ | #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl | ||
+ | using namespace std; | ||
+ | const ll INF = 1LL<<60; | ||
+ | const int inf = 1<<30; | ||
+ | const int maxn = 2e5+5; | ||
+ | const int M = 1e9+7; | ||
+ | inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} | ||
+ | int n; ll k; | ||
+ | struct Matrix | ||
+ | { | ||
+ | ll mat[15][15]; | ||
+ | Matrix() {memset(mat,0,sizeof(mat));} | ||
+ | Matrix operator * (const Matrix other) const | ||
+ | { | ||
+ | Matrix product; | ||
+ | rep(i,1,n+3) rep(j,1,n+3) rep(k,1,n+3) product.mat[i][j] = (product.mat[i][j] + mat[i][k]*other.mat[k][j])%M; | ||
+ | return product; | ||
+ | } | ||
+ | Matrix operator ^ (ll b) const | ||
+ | { | ||
+ | Matrix res,A=*this; | ||
+ | rep(i,1,n+3) res.mat[i][i] = 1; | ||
+ | while(b){ | ||
+ | if(b&1) res = res*A; | ||
+ | A = A*A; | ||
+ | b>>=1; | ||
+ | }return res; | ||
+ | } | ||
+ | }; | ||
+ | ll a[15]; | ||
+ | int main() | ||
+ | { | ||
+ | fastio(); | ||
+ | cin>>n>>k; k -= n-1; | ||
+ | rep(i,1,n) cin>>a[n-i+1]; a[n+1] = 1,a[n+2] = n,a[n+3] = n*n; | ||
+ | Matrix single; | ||
+ | rep(i,1,n+3) cin>>single.mat[1][i]; | ||
+ | rep(i,2,n) single.mat[i][i-1] = 1; | ||
+ | single.mat[n+1][n+1] = 1; | ||
+ | single.mat[n+2][n+1] = single.mat[n+2][n+2] = 1; | ||
+ | single.mat[n+3][n+1] = 1,single.mat[n+3][n+2] = 2,single.mat[n+3][n+3] = 1; | ||
+ | Matrix total = single^k; | ||
+ | ll ans = 0; | ||
+ | rep(i,1,n+3) ans = (ans + total.mat[1][i]*a[i])%M; | ||
+ | cout<<ans<<endl; | ||
+ | return 0; | ||
+ | } | ||
+ | </code> </hidden> | ||
+ | \\ | ||
+ | |||
+ | ==== H - String Mood Updates ==== | ||
+ | |||
+ | 给一个只包含 $26$ 个大写字母或者 $?$ 的字符串。一开始 $Limak$ 的心情是好的,接着从左往右遍历,如果遇到 $AEIOU$ 中的字母则心情翻转,如果遇到 $H$ 则心情变好,如果遇到 $S$ 和 $D$ 则心情变差。字符 $?$ 可以是任何一种字母。 | ||
+ | |||
+ | 问遍历了字符串后,$Limak$ 的心情仍然是好的的情况有多少种。并且会给出 $q$ 次修改,每次修改某个位置的字符,并询问最后的结果。 | ||
+ | |||
+ | 如果没有修改则可以线性的 $dp$ 求解。在有修改的情况下,考虑 $dp$ 的过程是一个矩阵的乘法,即每个字母对应了一种矩阵,那修改就可以用线段树来维护了。 | ||
+ | |||
+ | <hidden code> <code cpp> | ||
+ | /* | ||
+ | #pragma GCC optimize(2) | ||
+ | #pragma GCC optimize(3,"Ofast","inline") | ||
+ | */ | ||
+ | #include<bits/stdc++.h> | ||
+ | #define ALL(x) (x).begin(),(x).end() | ||
+ | #define ll long long | ||
+ | #define db double | ||
+ | #define ull unsigned long long | ||
+ | #define pii_ pair<int,int> | ||
+ | #define mp_ make_pair | ||
+ | #define pb push_back | ||
+ | #define fi first | ||
+ | #define se second | ||
+ | #define rep(i,a,b) for(int i=(a);i<=(b);i++) | ||
+ | #define per(i,a,b) for(int i=(a);i>=(b);i--) | ||
+ | #define show1(a) cout<<#a<<" = "<<a<<endl | ||
+ | #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl | ||
+ | using namespace std; | ||
+ | const ll INF = 1LL<<60; | ||
+ | const int inf = 1<<30; | ||
+ | const int maxn = 2e5+5; | ||
+ | const int M = 1e9+7; | ||
+ | inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} | ||
+ | char s[maxn]; | ||
+ | int n,q; | ||
+ | struct Matrix | ||
+ | { | ||
+ | ll mat[2][2]; | ||
+ | Matrix() {memset(mat,0,sizeof(mat));} | ||
+ | Matrix operator * (const Matrix other) const | ||
+ | { | ||
+ | Matrix product; | ||
+ | rep(i,0,1)rep(j,0,1)rep(k,0,1) product.mat[i][j] = (product.mat[i][j] + mat[i][k] * other.mat[k][j])%M; | ||
+ | return product; | ||
+ | } | ||
+ | }tr[maxn<<2]; | ||
+ | void push_up(int id) | ||
+ | { | ||
+ | tr[id] = tr[id<<1] * tr[id<<1|1]; | ||
+ | } | ||
+ | void build(int id,int l,int r) | ||
+ | { | ||
+ | if(l==r){ | ||
+ | if(s[n-l+1]=='A' || s[n-l+1]=='E' || s[n-l+1]=='I' || s[n-l+1]=='O' || s[n-l+1]=='U'){ | ||
+ | tr[id].mat[0][1] = tr[id].mat[1][0] = 1; | ||
+ | }else if(s[n-l+1]=='H'){ | ||
+ | tr[id].mat[0][0] = tr[id].mat[0][1] = 1; | ||
+ | }else if(s[n-l+1]=='S' || s[n-l+1]=='D'){ | ||
+ | tr[id].mat[1][0] = tr[id].mat[1][1] = 1; | ||
+ | }else if(s[n-l+1]=='?'){ | ||
+ | tr[id].mat[0][0] = 19,tr[id].mat[0][1] = 6; | ||
+ | tr[id].mat[1][0] = 7,tr[id].mat[1][1] = 20; | ||
+ | }else { | ||
+ | tr[id].mat[0][0] = tr[id].mat[1][1] = 1; | ||
+ | } | ||
+ | return ; | ||
+ | } | ||
+ | int mid = (l+r)>>1; | ||
+ | build(id<<1,l,mid);build(id<<1|1,mid+1,r); | ||
+ | push_up(id); | ||
+ | } | ||
+ | void update(int id,int stl,int str,int pos,char o) | ||
+ | { | ||
+ | if(stl==str){ | ||
+ | memset(tr[id].mat,0,sizeof(tr[id].mat)); | ||
+ | if(o=='A' || o=='E' || o=='I' || o=='O' || o=='U'){ | ||
+ | tr[id].mat[0][1] = tr[id].mat[1][0] = 1; | ||
+ | }else if(o=='H'){ | ||
+ | tr[id].mat[0][0] = tr[id].mat[0][1] = 1; | ||
+ | }else if(o=='S' || o=='D'){ | ||
+ | tr[id].mat[1][0] = tr[id].mat[1][1] = 1; | ||
+ | }else if(o=='?'){ | ||
+ | tr[id].mat[0][0] = 19,tr[id].mat[0][1] = 6; | ||
+ | tr[id].mat[1][0] = 7,tr[id].mat[1][1] = 20; | ||
+ | }else { | ||
+ | tr[id].mat[0][0] = tr[id].mat[1][1] = 1; | ||
+ | } | ||
+ | return ; | ||
+ | } | ||
+ | int mid = (stl+str)>>1; | ||
+ | if(pos<=mid) update(id<<1,stl,mid,pos,o); | ||
+ | else update(id<<1|1,mid+1,str,pos,o); | ||
+ | push_up(id); | ||
+ | } | ||
+ | int main() | ||
+ | { | ||
+ | fastio(); | ||
+ | cin>>n>>q>>s+1; | ||
+ | build(1,1,n); | ||
+ | cout<<tr[1].mat[0][0]<<endl; | ||
+ | while(q--){ int pos;char o; | ||
+ | cin>>pos>>o; | ||
+ | update(1,1,n,n-pos+1,o); | ||
+ | cout<<tr[1].mat[0][0]<<endl; | ||
+ | } | ||
+ | return 0; | ||
+ | } | ||
+ | </code> </hidden> | ||
+ | \\ | ||
+ | |||
+ | ==== I - Count Paths Queries ==== | ||
+ | |||
+ | 给一个有向图和 $q$ 次询问,每次询问是求 $s$ 到 $t$ 并经过 $k$ 条边的路径数。 | ||
+ | |||
+ | 因为 $n,q \le 200$,所以每次都用快速幂求一次是不行的。因为每次询问只要求特定两点之间的路径,所以很多乘法是没有意义的,考虑如何只维护矩阵的第 $s$ 行向量: | ||
+ | |||
+ | 可以先倍增求出邻接矩阵的 $2$ 的幂次的幂次。然后每次询问时只需要维护第 $s$ 行的向量即可。 | ||
+ | |||
+ | <hidden code> <code cpp> | ||
+ | /* | ||
+ | #pragma GCC optimize(2) | ||
+ | #pragma GCC optimize(3,"Ofast","inline") | ||
+ | */ | ||
+ | #include<bits/stdc++.h> | ||
+ | #define ALL(x) (x).begin(),(x).end() | ||
+ | #define ll long long | ||
+ | #define db double | ||
+ | #define ull unsigned long long | ||
+ | #define pii_ pair<int,int> | ||
+ | #define mp_ make_pair | ||
+ | #define pb push_back | ||
+ | #define fi first | ||
+ | #define se second | ||
+ | #define rep(i,a,b) for(int i=(a);i<=(b);i++) | ||
+ | #define per(i,a,b) for(int i=(a);i>=(b);i--) | ||
+ | #define show1(a) cout<<#a<<" = "<<a<<endl | ||
+ | #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl | ||
+ | using namespace std; | ||
+ | const ll INF = 1LL<<60; | ||
+ | const int inf = 1<<30; | ||
+ | const int maxn = 2e5+5; | ||
+ | const int M = 1e9+7; | ||
+ | inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} | ||
+ | int n,m,q; | ||
+ | struct Matrix | ||
+ | { | ||
+ | ll mat[201][201]; | ||
+ | Matrix() {memset(mat,0,sizeof(mat));} | ||
+ | Matrix operator * (const Matrix other) const | ||
+ | { | ||
+ | Matrix product; | ||
+ | rep(i,1,n) rep(j,1,n) rep(k,1,n) product.mat[i][j] = (product.mat[i][j] + mat[i][k]*other.mat[k][j])%M; | ||
+ | return product; | ||
+ | } | ||
+ | }A[35]; | ||
+ | int ans[205],tmp[205]; | ||
+ | int main() | ||
+ | { | ||
+ | fastio(); | ||
+ | cin>>n>>m>>q; | ||
+ | while(m--){ | ||
+ | int u,v; cin>>u>>v; | ||
+ | A[0].mat[u][v] = 1; | ||
+ | } | ||
+ | rep(i,1,30) A[i] = A[i-1]*A[i-1]; | ||
+ | while(q--){ int s,t,k; | ||
+ | cin>>s>>t>>k; | ||
+ | rep(i,1,n) ans[i] = (i==s); | ||
+ | rep(b,0,30){ | ||
+ | if((k>>b)&1){ | ||
+ | rep(i,1,n) tmp[i] = 0; | ||
+ | rep(i,1,n) rep(j,1,n) tmp[i] = (tmp[i] + ans[j] * A[b].mat[j][i])%M; | ||
+ | rep(i,1,n) ans[i] = tmp[i]; | ||
+ | } | ||
+ | } | ||
+ | cout<<ans[t]<<endl; | ||
+ | } | ||
+ | return 0; | ||
+ | } | ||
+ | </code> </hidden> | ||
+ | \\ |