这里会显示出您选择的修订版和当前版本之间的差别。
| 两侧同时换到之前的修订记录 前一修订版 | |||
| 
                    2020-2021:teams:wangzai_milk:matrix_exponentiation [2020/08/12 01:48] wzx27  | 
                
                    2020-2021:teams:wangzai_milk:matrix_exponentiation [2020/08/12 01:58] (当前版本) wzx27  | 
            ||
|---|---|---|---|
| 行 158: | 行 158: | ||
| return 0; | return 0; | ||
| } | } | ||
| - | </code> </hidden>  | + | </code> </hidden> | 
| + | \\ | ||
| + | |||
| + | ==== H - String Mood Updates ==== | ||
| + | |||
| + | 给一个只包含 $26$ 个大写字母或者 $?$ 的字符串。一开始 $Limak$ 的心情是好的,接着从左往右遍历,如果遇到 $AEIOU$ 中的字母则心情翻转,如果遇到 $H$ 则心情变好,如果遇到 $S$ 和 $D$ 则心情变差。字符 $?$ 可以是任何一种字母。 | ||
| + | |||
| + | 问遍历了字符串后,$Limak$ 的心情仍然是好的的情况有多少种。并且会给出 $q$ 次修改,每次修改某个位置的字符,并询问最后的结果。 | ||
| + | |||
| + | 如果没有修改则可以线性的 $dp$ 求解。在有修改的情况下,考虑 $dp$ 的过程是一个矩阵的乘法,即每个字母对应了一种矩阵,那修改就可以用线段树来维护了。 | ||
| + | |||
| + | <hidden code> <code cpp> | ||
| + | /* | ||
| + | #pragma GCC optimize(2) | ||
| + | #pragma GCC optimize(3,"Ofast","inline") | ||
| + | */ | ||
| + | #include<bits/stdc++.h> | ||
| + | #define ALL(x) (x).begin(),(x).end() | ||
| + | #define ll long long | ||
| + | #define db double | ||
| + | #define ull unsigned long long | ||
| + | #define pii_ pair<int,int> | ||
| + | #define mp_ make_pair | ||
| + | #define pb push_back | ||
| + | #define fi first | ||
| + | #define se second | ||
| + | #define rep(i,a,b) for(int i=(a);i<=(b);i++) | ||
| + | #define per(i,a,b) for(int i=(a);i>=(b);i--) | ||
| + | #define show1(a) cout<<#a<<" = "<<a<<endl | ||
| + | #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl | ||
| + | using namespace std; | ||
| + | const ll INF = 1LL<<60; | ||
| + | const int inf = 1<<30; | ||
| + | const int maxn = 2e5+5; | ||
| + | const int M = 1e9+7; | ||
| + | inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} | ||
| + | char s[maxn]; | ||
| + | int n,q; | ||
| + | struct Matrix | ||
| + | { | ||
| + | ll mat[2][2]; | ||
| + | Matrix() {memset(mat,0,sizeof(mat));} | ||
| + | Matrix operator * (const Matrix other) const | ||
| + | { | ||
| + | Matrix product; | ||
| + | rep(i,0,1)rep(j,0,1)rep(k,0,1) product.mat[i][j] = (product.mat[i][j] + mat[i][k] * other.mat[k][j])%M; | ||
| + | return product; | ||
| + | } | ||
| + | }tr[maxn<<2]; | ||
| + | void push_up(int id) | ||
| + | { | ||
| + | tr[id] = tr[id<<1] * tr[id<<1|1]; | ||
| + | } | ||
| + | void build(int id,int l,int r) | ||
| + | { | ||
| + | if(l==r){ | ||
| + | if(s[n-l+1]=='A' || s[n-l+1]=='E' || s[n-l+1]=='I' || s[n-l+1]=='O' || s[n-l+1]=='U'){ | ||
| + | tr[id].mat[0][1] = tr[id].mat[1][0] = 1; | ||
| + | }else if(s[n-l+1]=='H'){ | ||
| + | tr[id].mat[0][0] = tr[id].mat[0][1] = 1; | ||
| + | }else if(s[n-l+1]=='S' || s[n-l+1]=='D'){ | ||
| + | tr[id].mat[1][0] = tr[id].mat[1][1] = 1; | ||
| + | }else if(s[n-l+1]=='?'){ | ||
| + | tr[id].mat[0][0] = 19,tr[id].mat[0][1] = 6; | ||
| + | tr[id].mat[1][0] = 7,tr[id].mat[1][1] = 20; | ||
| + | }else { | ||
| + | tr[id].mat[0][0] = tr[id].mat[1][1] = 1; | ||
| + | } | ||
| + | return ; | ||
| + | } | ||
| + | int mid = (l+r)>>1; | ||
| + | build(id<<1,l,mid);build(id<<1|1,mid+1,r); | ||
| + | push_up(id); | ||
| + | } | ||
| + | void update(int id,int stl,int str,int pos,char o) | ||
| + | { | ||
| + | if(stl==str){ | ||
| + | memset(tr[id].mat,0,sizeof(tr[id].mat)); | ||
| + | if(o=='A' || o=='E' || o=='I' || o=='O' || o=='U'){ | ||
| + | tr[id].mat[0][1] = tr[id].mat[1][0] = 1; | ||
| + | }else if(o=='H'){ | ||
| + | tr[id].mat[0][0] = tr[id].mat[0][1] = 1; | ||
| + | }else if(o=='S' || o=='D'){ | ||
| + | tr[id].mat[1][0] = tr[id].mat[1][1] = 1; | ||
| + | }else if(o=='?'){ | ||
| + | tr[id].mat[0][0] = 19,tr[id].mat[0][1] = 6; | ||
| + | tr[id].mat[1][0] = 7,tr[id].mat[1][1] = 20; | ||
| + | }else { | ||
| + | tr[id].mat[0][0] = tr[id].mat[1][1] = 1; | ||
| + | } | ||
| + | return ; | ||
| + | } | ||
| + | int mid = (stl+str)>>1; | ||
| + | if(pos<=mid) update(id<<1,stl,mid,pos,o); | ||
| + | else update(id<<1|1,mid+1,str,pos,o); | ||
| + | push_up(id); | ||
| + | } | ||
| + | int main() | ||
| + | { | ||
| + | fastio(); | ||
| + | cin>>n>>q>>s+1; | ||
| + | build(1,1,n); | ||
| + | cout<<tr[1].mat[0][0]<<endl; | ||
| + | while(q--){ int pos;char o; | ||
| + | cin>>pos>>o; | ||
| + | update(1,1,n,n-pos+1,o); | ||
| + | cout<<tr[1].mat[0][0]<<endl; | ||
| + | } | ||
| + | return 0; | ||
| + | } | ||
| + | </code> </hidden> | ||
| + | \\ | ||
| + | |||
| + | ==== I - Count Paths Queries ==== | ||
| + | |||
| + | 给一个有向图和 $q$ 次询问,每次询问是求 $s$ 到 $t$ 并经过 $k$ 条边的路径数。 | ||
| + | |||
| + | 因为 $n,q \le 200$,所以每次都用快速幂求一次是不行的。因为每次询问只要求特定两点之间的路径,所以很多乘法是没有意义的,考虑如何只维护矩阵的第 $s$ 行向量: | ||
| + | |||
| + | 可以先倍增求出邻接矩阵的 $2$ 的幂次的幂次。然后每次询问时只需要维护第 $s$ 行的向量即可。 | ||
| + | |||
| + | <hidden code> <code cpp> | ||
| + | /* | ||
| + | #pragma GCC optimize(2) | ||
| + | #pragma GCC optimize(3,"Ofast","inline") | ||
| + | */ | ||
| + | #include<bits/stdc++.h> | ||
| + | #define ALL(x) (x).begin(),(x).end() | ||
| + | #define ll long long | ||
| + | #define db double | ||
| + | #define ull unsigned long long | ||
| + | #define pii_ pair<int,int> | ||
| + | #define mp_ make_pair | ||
| + | #define pb push_back | ||
| + | #define fi first | ||
| + | #define se second | ||
| + | #define rep(i,a,b) for(int i=(a);i<=(b);i++) | ||
| + | #define per(i,a,b) for(int i=(a);i>=(b);i--) | ||
| + | #define show1(a) cout<<#a<<" = "<<a<<endl | ||
| + | #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl | ||
| + | using namespace std; | ||
| + | const ll INF = 1LL<<60; | ||
| + | const int inf = 1<<30; | ||
| + | const int maxn = 2e5+5; | ||
| + | const int M = 1e9+7; | ||
| + | inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} | ||
| + | int n,m,q; | ||
| + | struct Matrix | ||
| + | { | ||
| + | ll mat[201][201]; | ||
| + | Matrix() {memset(mat,0,sizeof(mat));} | ||
| + | Matrix operator * (const Matrix other) const | ||
| + | { | ||
| + | Matrix product; | ||
| + | rep(i,1,n) rep(j,1,n) rep(k,1,n) product.mat[i][j] = (product.mat[i][j] + mat[i][k]*other.mat[k][j])%M; | ||
| + | return product; | ||
| + | } | ||
| + | }A[35]; | ||
| + | int ans[205],tmp[205]; | ||
| + | int main() | ||
| + | { | ||
| + | fastio(); | ||
| + | cin>>n>>m>>q; | ||
| + | while(m--){ | ||
| + | int u,v; cin>>u>>v; | ||
| + | A[0].mat[u][v] = 1; | ||
| + | } | ||
| + | rep(i,1,30) A[i] = A[i-1]*A[i-1]; | ||
| + | while(q--){ int s,t,k; | ||
| + | cin>>s>>t>>k; | ||
| + | rep(i,1,n) ans[i] = (i==s); | ||
| + | rep(b,0,30){ | ||
| + | if((k>>b)&1){ | ||
| + | rep(i,1,n) tmp[i] = 0; | ||
| + | rep(i,1,n) rep(j,1,n) tmp[i] = (tmp[i] + ans[j] * A[b].mat[j][i])%M; | ||
| + | rep(i,1,n) ans[i] = tmp[i]; | ||
| + | } | ||
| + | } | ||
| + | cout<<ans[t]<<endl; | ||
| + | } | ||
| + | return 0; | ||
| + | } | ||
| + | </code> </hidden> | ||
| + | \\ | ||