这里会显示出您选择的修订版和当前版本之间的差别。
后一修订版 | 前一修订版 | ||
2020-2021:teams:wangzai_milk:weekly5 [2020/06/05 14:42] infinity37 创建 |
2020-2021:teams:wangzai_milk:weekly5 [2020/07/01 13:00] (当前版本) zars19 [Zars19] |
||
---|---|---|---|
行 5: | 行 5: | ||
===== _wzx27 ===== | ===== _wzx27 ===== | ||
+ | ==== 1.补题 ==== | ||
+ | 补了一下之前比赛的题 | ||
+ | |||
+ | [[http://acm.hdu.edu.cn/showproblem.php?pid=6589|HDU6589 Sequence]] | ||
+ | |||
+ | 把数列 $a_i$ 写成其生成函数的形式 $f(x)=\sum a_ix^i$,每个操作 $k$ 相当于 $f(x)\cdot \sum x^{ik}$,由交换律知顺序不重要,所以可以统计每种操作的次数 $m_i$,最后有 | ||
+ | |||
+ | $$f(x)\cdot (\sum x^{i})^{m_1} \cdot (\sum x^{2i})^{m_2} \cdot (\sum x^{3i})^{m_3}$$ | ||
+ | |||
+ | 其中$(\sum x^{ki})^m = \sum {i+m-1 \choose m-1}x^{ik}$ | ||
+ | |||
+ | 另外模数刚好是998244353,做三次NTT即可 | ||
+ | |||
+ | <hidden> | ||
+ | <code cpp> | ||
+ | #include<bits/stdc++.h> | ||
+ | #define ll long long | ||
+ | #define pii_ pair<int,int> | ||
+ | #define mp_ make_pair | ||
+ | #define pb push_back | ||
+ | #define fi first | ||
+ | #define se second | ||
+ | #define rep(i,a,b) for(int i=(a);i<=(b);i++) | ||
+ | #define per(i,a,b) for(int i=(a);i>=(b);i--) | ||
+ | #define show1(a) cout<<#a<<" = "<<a<<endl | ||
+ | #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl | ||
+ | using namespace std; | ||
+ | const ll INF = 1LL<<60; | ||
+ | const int inf = 1<<30; | ||
+ | const int maxn = 2e6+5; | ||
+ | const ll M = 998244353; | ||
+ | inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} | ||
+ | ll qpow(ll a,ll b) {ll s=1;while(b){if(b&1)s=(s*a)%M;a=(a*a)%M;b>>=1;}return s; } | ||
+ | int n,m,lim,l,r[maxn],cnt[maxn]; | ||
+ | ll A[maxn],B[maxn],fac[maxn],inv[maxn]; | ||
+ | int c[5]; | ||
+ | void NTT(ll a[],int type) | ||
+ | { | ||
+ | rep(i,1,lim-1) if(i<r[i]) swap(a[i],a[r[i]]); | ||
+ | for(int mid=1;mid<lim;mid<<=1){ | ||
+ | ll wn = qpow(3,(M-1)/mid/2); | ||
+ | if(type==-1) wn = qpow(wn,M-2); | ||
+ | for(int R=mid<<1,j=0;j<lim;j+=R){ | ||
+ | ll w = 1; | ||
+ | for(int k=0;k<mid;k++,w=w*wn%M){ | ||
+ | ll x=a[j+k],y=w*a[j+mid+k]%M; | ||
+ | a[j+k] = (x+y)%M; | ||
+ | a[j+mid+k] = (x-y+M)%M; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | if(type==-1){ | ||
+ | ll INV = qpow(lim,M-2); | ||
+ | rep(i,0,lim) a[i] = a[i]*INV%M; | ||
+ | } | ||
+ | } | ||
+ | ll Comb(ll a,ll b) {return a<b?0:fac[a]*inv[b]%M*inv[a-b]%M;} | ||
+ | void init() | ||
+ | { | ||
+ | fac[0] = 1; | ||
+ | rep(i,1,2000000) fac[i]=fac[i-1]*i%M; | ||
+ | inv[2000000] = qpow(fac[2000000],M-2); | ||
+ | per(i,2000000-1,0) inv[i]=inv[i+1]*(i+1)%M; | ||
+ | } | ||
+ | int main() | ||
+ | { | ||
+ | fastio(); | ||
+ | int _; | ||
+ | init(); | ||
+ | for(cin>>_;_;_--){ | ||
+ | cin>>n>>m; | ||
+ | memset(A,0,sizeof(A)); | ||
+ | memset(B,0,sizeof(B)); | ||
+ | rep(i,0,n-1) cin>>A[i]; | ||
+ | lim=1,l=0; | ||
+ | while(lim<=2*n) lim<<=1,l++; | ||
+ | rep(i,0,lim-1) r[i] = (r[i>>1]>>1) | ((i&1)<<(l-1)); | ||
+ | cnt[1]=cnt[2]=cnt[3]=0; | ||
+ | while(m--) {int x;cin>>x;cnt[x]++;} | ||
+ | rep(i,1,3)if(cnt[i]){ | ||
+ | memset(B,0,sizeof(B)); | ||
+ | for(int j=0;j*i<n;j++) B[i*j] = Comb(cnt[i]+j-1,j); | ||
+ | NTT(A,1);NTT(B,1); | ||
+ | rep(i,0,lim) A[i] = A[i]*B[i]%M; | ||
+ | NTT(A,-1); | ||
+ | rep(i,n+1,lim) A[i]=0; | ||
+ | } | ||
+ | ll ans = 0; | ||
+ | rep(i,0,n-1) ans ^= ((i+1)*A[i]); | ||
+ | cout<<ans<<endl; | ||
+ | } | ||
+ | return 0; | ||
+ | } | ||
+ | </code> | ||
+ | </hidden> | ||
+ | |||
+ | ==== 2.整数分拆 ==== | ||
+ | |||
+ | 生成函数的基本应用,求 $x1+x2+x3\cdots x^k=n$ 的非负整数解的个数。 | ||
+ | |||
+ | === 2.1 有序分拆 === | ||
+ | 把每个数写成生成函数 $(1+x+x^2+\cdots)$ 的形式 | ||
+ | |||
+ | 那么分拆数就等于 $(1+x+x^2+\cdots)^k$ 的 $n$ 次项前面的系数${n+k-1 \choose k-1}$ | ||
+ | |||
+ | 这个证明可以通过$(1+x+x^2+\cdots)^k=\frac 1{(1-x)^k}$的逐项求导证明 | ||
+ | |||
+ | === 2.2 无序分拆 === | ||
+ | 无序的分拆容易想到朴素 $O(n^2)$ 的$\text{dp}$ | ||
+ | |||
+ | 记 $P(n)$ 为 $n$ 的无序拆分数如果用生成函数来做就是 | ||
+ | |||
+ | $$\sum_{i=1}^\infty P(i)x^i=(1+x+x^2+\cdots)(1+x^2+x^4+\cdots)\cdots=\prod_{i=0}^\infty \frac 1{1-x^i}$$ | ||
+ | |||
+ | 结合五边形数定理 $\prod_{i=0}^\infty (1-x^i)=1+\sum_{i=1}^\infty (-1)^i(x^{\frac {i(3i-1)}2}+x^{\frac {i(3i+1)}2})$ 得到: | ||
+ | |||
+ | $$(1+P(1)x+P(2)x^2+\cdots)(1-x-x^2+x^5+\cdots)=1$$ | ||
+ | |||
+ | 比较两边的系数得到 $P(n)-P(n-1)-P(n-2)+P(n-5)=0$,即$P(n)-P(n-1)-P(n-2)+P(n-5)+P(n-7)-\cdots = 0$ | ||
+ | |||
+ | 这样就得到了 $P(n)=\sum_{i=1}(-1)^i(P(n-\frac {i(3i-1)}2)+P(n-\frac {i(3i+1)}2))$ | ||
+ | |||
+ | [[http://acm.hdu.edu.cn/showproblem.php?pid=4651|HDU4651]] | ||
+ | 模板题 | ||
+ | <hidden code> | ||
+ | <code cpp> | ||
+ | #include<bits/stdc++.h> | ||
+ | #define ll long long | ||
+ | #define pii_ pair<int,int> | ||
+ | #define mp_ make_pair | ||
+ | #define pb push_back | ||
+ | #define fi first | ||
+ | #define se second | ||
+ | #define rep(i,a,b) for(int i=(a);i<=(b);i++) | ||
+ | #define per(i,a,b) for(int i=(a);i>=(b);i--) | ||
+ | #define show1(a) cout<<#a<<" = "<<a<<endl | ||
+ | #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl | ||
+ | using namespace std; | ||
+ | const ll INF = 1LL<<60; | ||
+ | const int inf = 1<<30; | ||
+ | const int maxn = 2e5+5; | ||
+ | const ll M = 1e9+7; | ||
+ | inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} | ||
+ | |||
+ | ll f1[maxn],f2[maxn],P[maxn]; | ||
+ | void init() | ||
+ | { | ||
+ | int n = 1e5; | ||
+ | for(int i=1;;i++){ | ||
+ | f1[i] = (3*i*i-i)>>1; | ||
+ | if(f1[i]>n) break; | ||
+ | f2[i] = (3*i*i+i)>>1; | ||
+ | if(f2[i]>n) break; | ||
+ | } | ||
+ | P[0] = 1; | ||
+ | rep(i,1,n){ | ||
+ | for(int j=1;;j++){ | ||
+ | if(f1[j]<=i) P[i] += (j&1)?P[i-f1[j]] : -P[i-f1[j]]; | ||
+ | else break; | ||
+ | if(f2[j]<=i) P[i] += (j&1)?P[i-f2[j]] : -P[i-f2[j]]; | ||
+ | else break; | ||
+ | } | ||
+ | P[i] = (P[i]%M+M)%M; | ||
+ | } | ||
+ | } | ||
+ | int main() | ||
+ | { | ||
+ | fastio(); | ||
+ | init(); | ||
+ | int _,n; | ||
+ | for(cin>>_;_;_--){ | ||
+ | cin>>n;cout<<P[n]<<endl; | ||
+ | } | ||
+ | return 0; | ||
+ | } | ||
+ | </code> | ||
+ | </hidden> | ||
+ | |||
+ | [[http://acm.hdu.edu.cn/showproblem.php?pid=4658|HDU4658]] | ||
+ | |||
+ | 拆分时每个数的使用次数要小于 $k$。 | ||
+ | |||
+ | 把生成函数改一下: | ||
+ | |||
+ | $$(1+x+x^2+\cdots+x^{k-1})(1+x^2+x^4+\cdots+x^{2(k-1)})\cdots=\prod_{i=1}^\infty \frac {1-x^{ik}}{1-x^i}=\phi(x^k)\sum_{i=0}^\infty P(n)x^i$$ | ||
+ | |||
+ | <hidden> | ||
+ | <code cpp> | ||
+ | #include<bits/stdc++.h> | ||
+ | #define ll long long | ||
+ | #define pii_ pair<int,int> | ||
+ | #define mp_ make_pair | ||
+ | #define pb push_back | ||
+ | #define fi first | ||
+ | #define se second | ||
+ | #define rep(i,a,b) for(int i=(a);i<=(b);i++) | ||
+ | #define per(i,a,b) for(int i=(a);i>=(b);i--) | ||
+ | #define show1(a) cout<<#a<<" = "<<a<<endl | ||
+ | #define show2(a,b) cout<<#a<<" = "<<a<<"; "<<#b<<" = "<<b<<endl | ||
+ | using namespace std; | ||
+ | const ll INF = 1LL<<60; | ||
+ | const int inf = 1<<30; | ||
+ | const int maxn = 2e5+5; | ||
+ | const ll M = 1e9+7; | ||
+ | inline void fastio() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} | ||
+ | |||
+ | ll f1[maxn],f2[maxn],P[maxn]; | ||
+ | void init() | ||
+ | { | ||
+ | int n = 1e5; | ||
+ | for(int i=1;;i++){ | ||
+ | f1[i] = (3*i*i-i)>>1; | ||
+ | if(f1[i]>n) break; | ||
+ | f2[i] = (3*i*i+i)>>1; | ||
+ | if(f2[i]>n) break; | ||
+ | } | ||
+ | P[0] = 1; | ||
+ | rep(i,1,n){ | ||
+ | for(int j=1;;j++){ | ||
+ | if(f1[j]<=i) P[i] += (j&1)?P[i-f1[j]] : -P[i-f1[j]]; | ||
+ | else break; | ||
+ | if(f2[j]<=i) P[i] += (j&1)?P[i-f2[j]] : -P[i-f2[j]]; | ||
+ | else break; | ||
+ | } | ||
+ | P[i] = (P[i]%M+M)%M; | ||
+ | } | ||
+ | } | ||
+ | ll solve(int n,int k) | ||
+ | { | ||
+ | ll ans = P[n]; | ||
+ | for(int i=1;;i++){ | ||
+ | ll a = (ll)k*(3*i*i-i)>>1; | ||
+ | if(a>n) break; | ||
+ | ll t = P[n-a]; | ||
+ | ll b = (ll)k*(3*i*i+i)>>1; | ||
+ | if(b<=n) t = (t+P[n-b])%M; | ||
+ | if(i&1) ans = (ans-t+M)%M; | ||
+ | else ans = (ans+t)%M; | ||
+ | } | ||
+ | return ans; | ||
+ | } | ||
+ | int main() | ||
+ | { | ||
+ | fastio(); | ||
+ | init(); | ||
+ | int _,n,k; | ||
+ | for(cin>>_;_;_--){ | ||
+ | cin>>n>>k;cout<<solve(n,k)<<endl; | ||
+ | } | ||
+ | return 0; | ||
+ | } | ||
+ | </code> | ||
+ | </hidden> | ||
===== Infinity37 ===== | ===== Infinity37 ===== | ||
在搞期末考试,完全摸了 | 在搞期末考试,完全摸了 | ||
===== Zars19 ===== | ===== Zars19 ===== | ||
+ | |||
+ | 不好意思摸了摸了,我马上补555 | ||
+ | |||
+ | 楼上上好强… | ||
+ | |||
+ | ==== 比赛 ==== | ||
+ | |||
+ | [[Educational Codeforces Round 83 (Rated for Div. 2)]] | ||
===== 本周推荐 ===== | ===== 本周推荐 ===== | ||
- | 先放一个本周要写的wiki:[[树链剖分]] | ||
- | 1、[[https://www.luogu.com.cn/problem/P2227|P2227 洗牌机]] | ||
- | 置换群的分数幂(开方)运算,有助于加深对置换群的一些性质的了解 |