跳至内容
CVBB ACM Team
用户工具
注册
登录
站点工具
搜索
工具
显示页面
修订记录
Copy this page
导出 PDF
反向链接
最近更改
媒体管理器
网站地图
注册
登录
>
最近更改
媒体管理器
网站地图
您在这里:
front_page
»
2020-2021
»
teams
»
farmer_john
»
2020.7.30
2020-2021:teams:farmer_john:2020.7.30
本页面只读。您可以查看源文件,但不能更改它。如果您觉得这是系统错误,请联系管理员。
[[https://codeforces.com/gym/289361|比赛链接]] =====CF Expected diameter of a tree===== ====题意==== 给定一片森林,$q$ 此询问,每次给出两个点 $u,v$ ,如果 $u,v$ 在一棵树内输出 $-1$ ,否则在这两棵树任取一点临时建立一条边,求连边后的直径的期望。$n,q\le 10^5$ ====题解==== 首先我们可以预处理出每个点在哪棵树中,其次预处理出每个点 $u$ 到这棵树叶子的最大值 $mx[u]$ ,这个可以用树形$DP$ 处理,将每棵树按照这个最大值进行排序,最后在处理出每棵树的直径长度 $len$ 。询问的时候枚举点数少的树,在另一棵树中寻找另一个点。将两棵树连接 $u,v$ 后的直径有两种情况: * $mx[u]+mx[v]+1$ * $\max(len[u],len[v])$ 第二种情况是一个定值,因此对于每一个 $v$ 我们可以二分出满足第一种情况的 $u$ 的个数,剩余的即为第二种情况。最后答案要用 $map$ 记录下来避免重复询问。复杂度是神奇的 $O(n\sqrt{n}\log{n})$ =====CF Selling Souvenirs===== ====题意==== ====题解==== =====CF Card Game===== ====题意==== ====题解==== =====CF Anthem of Berland===== ====题意==== ====题解==== =====CF Glad to see you!===== ====题意==== ====题解==== =====CF Vladik and Favorite Game===== ====题意==== ====题解==== =====CF Sagheer and Apple Tree===== ====题意==== ====题解==== =====CF Army Creation===== ====题意==== ====题解==== =====CF Bipartite Checking===== ====题意==== ====题解==== =====CF An overnight dance in discotheque===== ====题意==== * $n$个只有相离和包含关系的圆,覆盖奇数次的区域为阴影,偶数次为空白,选择一些圆将原图分为两部分,每部分分别计算面积,使阴影部分面积最大 ====题解==== * 第一种做法是贪心,即把覆盖两次的圆取出来,剩下的圆不动。 * 关于证明,首先通过画图不难看出来,假设第二部分初始是空白的,那么将某个圆移动至第二部分,如果该圆覆盖区域变为阴影,那么总面积一定是增加或不变的,反之会减少或不变。 * 同理,可以把圆转换为任意形状的闭合区域。 * 当把覆盖两次的圆移动至左侧后,对于两次以上的圆,无论怎么移动,第二部分出现空白,总面积$\leq$最优面积 * 如果移动覆盖一次的圆,实际上就是相当于把覆盖两次及以上的圆移动到第二部分,肯定是不优的。
2020-2021/teams/farmer_john/2020.7.30.txt
· 最后更改: 2020/08/07 17:09 由
2sozx
页面工具
显示页面
修订记录
反向链接
Copy this page
导出 PDF
回到顶部