跳至内容
CVBB ACM Team
用户工具
注册
登录
站点工具
搜索
工具
显示页面
修订记录
Copy this page
导出 PDF
反向链接
最近更改
媒体管理器
网站地图
注册
登录
>
最近更改
媒体管理器
网站地图
您在这里:
front_page
»
2020-2021
»
teams
»
intrepidsword
»
2020.06.12-2020.06.18_周报
2020-2021:teams:intrepidsword:2020.06.12-2020.06.18_周报
本页面只读。您可以查看源文件,但不能更改它。如果您觉得这是系统错误,请联系管理员。
===== 团队 ===== 2020.06.14 [[https://vjudge.net/contest/378303|2019 Multi-University Training Contest 2]] ''pro: 8/10/12'' ''rk: 11/874'' ===== 个人 ===== ==== zzh ==== ==== pmxm ==== ==== jsh ==== * 6/12 - [[https://ac.nowcoder.com/acm/contest/5961|牛客练习赛65]]: ''pro: 3/4/6'' ''rk: 16/445'' * 6/13 - [[https://atcoder.jp/contests/tokiomarine2020|Tokio Marine & Nichido Fire Insurance Programming Contest 2020]]: ''pro: 4/4/6'' ''rk: 357/5966'' * 6/13 - [[https://codeforces.com/contest/1364|Codeforces Round #649 (Div. 2)]]: ''pro: 4/4/5'' ''rk: 222/9003'' * 6/14 - [[https://atcoder.jp/contests/abc170|AtCoder Beginner Contest 170]]: ''pro: 6/6/6'' ''rk: 157/10433'' * 6/18 - [[https://codeforces.com/contest/1368|Codeforces Global Round 8]]: ''pro: 4/4/9'' ''rk: 1108/12358'' 都是水题,一见难题场原形毕露。 ===== 本周推荐 ===== ==== zzh ==== ==== pmxm ==== ==== jsh ==== === 最大流 <=> S-T 最小割 === 直观理解就是进行多次增广之后,S 和 T 不再能通过有流量的边连通,即几个增广路上各取某条边,这些边切开了 S 到 T 的有向路(当然,每次增广需要跑满流量)。 更正式的证明一般将两个问题描述为线性规划,然后证明这对问题是对偶的。 === 最小割割集 === 当然,有时 S-T 最小割可能还需要拿到割集,或者 $S$ 集合和 $T$ 集合。 做法为,在跑完最大流的**残余网络 (Residual network)**上,从 S 找能访问到的点,这些点即为最小割的 $S$ 集合的一个解,其他点即 $T$ 集合,从 $S$ 集合单向到 $T$ 集合的边即为割集。 需要注意参与网络是包括反向边的,可参考一下 [[https://stackoverflow.com/a/21219223/4287864|dingalapadum 的回答]]。 === 平面图上的最小割 === 因 BZOJ 1001 狼抓兔子 (现在没了) 而闻名于世的定理,即平面图的 S-T 最小割权和,等于对偶图的最短路长度。 === 最小割树 (Gomory-Hu Tree) (!) === 给定 $n$ 个点,$m$ 条边的无向图,求**任意两点间**的最小割权和大小。 ??? 实际上最小割权和的种类数并不多,比如找到了某两个点之间的最小割,很有可能对于另外某两个点可以用一样的割集得到最小割。 有时候可能这个模型藏得非常深,不细说了。 === 最小割例题 === [[http://acm.hdu.edu.cn/showproblem.php?pid=6598|2019 HDU 多校 2 - H - Harmonious Army]] 最小割本身不难,跑个最大流而已,真正麻烦的是图的构造,甚至有时不一定看得出来是最小割或最大流的模型。 == 题意 == 这个题目是要给士兵标记职位,“战士”或“法师”,每个战士只能有一个职位。 某两个战士如果均为战士则有个贡献 $a$,均为法师则有贡献 $c$,不一样则有贡献 $b = a/4+c/3$。 最大化贡献和。 == 题解 == <hidden> 分职位 = 分 $S$ 集合和 $T$ 集合。 题目要最大化,想用最小割就得倒着减。 那我们先把 $a + c$ 加到答案里,让最小割自己来减 $a$ 或 $c$ 或 $a+c-b = 3a/4+2c/3$。 减 $a$ 减 $c$ 好说,即两个点分在了同一个集合,那么我们把这两个点和 $T$、$S$ 分别连接 $c/2$, $a/2$ 流量的边即可(有向边)。 减 $a+c-b$ 说明两个点分在了不同的集合,已经割掉了 $a/2+c/2$ 了,那么我们需要这两个点之间连接一条 $a/4+c/6$ 流量的边(无向边,即两个有向边)。 实现上上述的值都乘个 $2$ 才能让边权都为整数,最后答案除以 $2$ 即可。 ISAP 实现:[[https://vjudge.net/solution/26000797|#26000797]] </hidden>
2020-2021/teams/intrepidsword/2020.06.12-2020.06.18_周报.txt
· 最后更改: 2020/07/05 21:19 由
toxel
页面工具
显示页面
修订记录
反向链接
Copy this page
导出 PDF
回到顶部