跳至内容
CVBB ACM Team
用户工具
注册
登录
站点工具
搜索
工具
显示页面
修订记录
Copy this page
导出 PDF
反向链接
最近更改
媒体管理器
网站地图
注册
登录
>
最近更改
媒体管理器
网站地图
您在这里:
front_page
»
2020-2021
»
teams
»
no_morning_training
»
weekly
»
宽度优先搜索及其优化
2020-2021:teams:no_morning_training:weekly:宽度优先搜索及其优化
本页面只读。您可以查看源文件,但不能更改它。如果您觉得这是系统错误,请联系管理员。
=====宽度优先搜索及其优化===== <del>大家都会*2</del> ====原理==== 宽度优先搜索(BFS),是常和[[2020-2021:teams:no_morning_training:深度优先搜索及其优化|深搜]]放在一起提及的算法。\\ 同样是一种搜索方法,与深搜优先往深处前进不同,访问完当前节点后不会立刻去访问它的子节点,而是去访问“同一层”的另一个节点。在搜索树中表现出来就是“一层一层”地访问。\\ 但“同层”的关系一般不会直接建立出来,这时候我们需要一种方法把一整层的节点先记下来。这种方法就是队列。\\ 考虑维护一个队列,每次访问出队的节点,访问完之后将该节点的所有子节点入队。\\ 当一层访问完之后,队列中剩下的是下一层的节点。\\ 和深搜自然的栈结构不同,宽搜的队列需要自己手动维护。\\ ====例题==== 比较模板的就是无权图的最短路。 ====优化==== 和深搜一样,裸宽搜基本没什么用。\\ ===循环队列=== 应该算常规操作吧...\\ 不过还是想列出来。毕竟挺有用的。\\ ===状态压缩=== 准确的说不是宽搜特有的优化策略。深搜也用得到。\\ 因为搜索是对状态进行的操作,所以如何表示一个状态是很重要的一个问题。\\ 对于许多题目而言,状态的存储可能会占据很大的空间,并且对于后期进行状态间的判断也带来相当大的麻烦。基于此,需要对状态进行压缩表示。\\ 例如一个大数可以进行取模操作。\\ ===剪枝=== 不管是深搜还是宽搜,合理地剪枝总是一种简化的好方法。\\ 当然也包含[[2020-2021:teams:no_morning_training:a_算法|A*算法]]\\ ===双向宽搜=== 考虑到随着层数的增加,单层的节点数越来越多,所需的队列空间也越来越大。\\ 为了解决这个问题,我们可以从起始状态和目标状态一起进行宽搜。\\ 当状态相遇时搜索结束。\\
2020-2021/teams/no_morning_training/weekly/宽度优先搜索及其优化.txt
· 最后更改: 2020/05/29 21:14 由
nomansland
页面工具
显示页面
修订记录
反向链接
Copy this page
导出 PDF
回到顶部