
2026/02/04 01:58 1/5 简况

CVBB ACM Team - https://wiki.cvbbacm.com/

简况

比赛链接

AC 5题，Rank 26th

总结与反思

cmx

lpy

xsy

F题让输出id输出了序号，C题加绝对值给自己加晕了导致白给WA。

C题最开始的时候考虑到了改y但是咋就没想到改x，弄了一个假的贪心乱WA。

像个憨批。

题解

A.Ball

容易想到将给出的两个箱子当做一条边相连，于是形成了一个图。我们的目标是为每条边选择一侧点，并
且点不会被重复选择。发现如果是一条l个点的链，那么就有l种选择，如果是一个基环树，那么就
有2种选择，如果是其他形状，那么是不可能的，因为点数比边数还要少了，对应不起来。另外注意要
额外判断单个点向自己连边的情况，这种虽然是环，但是种类是1。实现的时候善用并查集即可，维护
点数和边数和是否含有单点环三个信息，没必要找环因为和环长无关。

（并查集开始居然忘了路径压缩，打自己）

B.Seal

C.Parade

题意：

给定$2N$个学生的坐标(互不相同)，他们最终要到$1\leq x \leq N, 1 \leq y \leq 2$这$2N$个位置上去，中

https://vjudge.net/contest/372058#overview

Last
update:
2020/05/08
10:53

2020-2021:teams:alchemist:pku_campus_2019 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:alchemist:pku_campus_2019&rev=1588906424

https://wiki.cvbbacm.com/ Printed on 2026/02/04 01:58

途不能有两个学生在一个格子上，问最少移动(曼哈顿)距离和。

题解：

仔细一想就知道两个学生能不能在一个格子上对答案根本没有影响，因为你一定能有一种方案让他们不重
合。

那么我可以把$y>2$的学生先全部移到$(x,2)$，把$y<1$的学生全部移到$(x,1)$，这样一定不会使答案变
劣，这一段距离时必走的。

同理也可以这样处理x坐标，处理完后所有学生的位置现在都在$1\leq x \leq N, 1 \leq y \leq 2$这个范
围了，那么我们从左往右考虑：如果人多了就往右挪，不够就先在同一列找人(这样一定不劣，移动的总距
离不会变多)，同一列不能够满足就再从后面列找人，在写代码时用负数表示还需要多少个学生，具体实现
如下：

for (int i = 1; i <= n; ++i) {
 --num[i][1]; --num[i][2];
 if (1ll * num[i][1] * num[i][2] >= 0) {
 ans += abs(num[i][1] + num[i][2]);
 num[i + 1][1] += num[i][1];
 num[i + 1][2] += num[i][2];
 } else if (abs(num[i][1]) > abs(num[i][2])) {
 ans += abs(num[i][2]);
 num[i][1] += num[i][2];
 ans += abs(num[i][1]);
 num[i + 1][1] += num[i][1];
 } else {
 ans += abs(num[i][1]);
 num[i][2] += num[i][1];
 ans += abs(num[i][2]);
 num[i + 1][2] += num[i][2];
 }
}

D.Circuit

题意:

裸的FWT

题解:

generator和amplifier注意差分预处理,然后FWT得到receiver

最后预处理前缀和即可回答每组询问

by Hardict

2026/02/04 01:58 3/5 简况

CVBB ACM Team - https://wiki.cvbbacm.com/

E.Coprime

题意:

给定$\{a_{i}\}_{i=1}^{n}$,多组询问(l,r,x),求$\sum_{i=l}^{r}[gcd(a_{i},x)==1]$,强制在线

题解:

可以转变为求解$[1,r]$中满足的个数

考虑一个经典问题$1-n中与m互素的数的个数$,可以理题容斥解决

回到该题,可以知道判断素因子即可而且容斥利用的是$\mu(d)\neq 0$的数,针对多组询问,先预处
理$1-1e5$每个数的约数中$\mu(d)\neq 0的d$

设$f[r][d]表示a_{1}\sim a_{r}中,\{i:d|a_{i}\}的集合大小$,即可针对每个询问,进行不超过约数个
数$\sigma_{0}(x)\leq 128$次容斥即可

但$f[r][d]$实际转移量过大,注意到针对每个d,$f[r][d]$每次大小改变的r位置可知,且针对每
个a_{r},至多有$\sigma_{0}(a_{r})$个d改变

针对每个d存储改变位置,查询时利用$upper_bound$即可得到对应的$f[r][d]$值,即可完成计算

时间复杂度为:全局预处理$O(1e5 log1e5)$,每组预处理$O(n\sigma_{0}(a_{i}))$,单次询
问$O(\sigma_{0}(x)\sigma_{0}(a_{i}))$

by Hardict

F.Graduation

读题题，直接暴力枚举所有情况模拟即可。

by MountVoom

G.Go and Oreo

H.Homomorphism

I.Chamber of Braziers

J.Matrix of Determinants

Last
update:
2020/05/08
10:53

2020-2021:teams:alchemist:pku_campus_2019 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:alchemist:pku_campus_2019&rev=1588906424

https://wiki.cvbbacm.com/ Printed on 2026/02/04 01:58

K.Winner Winner, Chicken Dinner!

补题

I. Chamber of Braziers

很好的一道题，在比赛时居然死想没想出来TAT

考虑最终答案$[l,r]$里面，必然有一个1和一个最大值$t=r-l+1$。我们分t在1左边和右边两种情况讨论，第
一种是第二种的对称。如果t在1右边的话，那么可以先找到1，然后枚举右端点r，顺便求这一段最大
值mx。那么对于这个r，可能的l就已经唯一确定了——$r-mx+1$。剩下的工作实际上就是判断[l,r]之间，
是否满足排序之后为1 2 3 4 5⋯

这个可以用对权值数组求字符串哈希来做。

但这里有个更方便有趣的方法，随机化+前缀异或。详见代码。如果我们需要比较的串的长度是一致，并
且不考虑字符顺序的时候，可以使用这个技巧。

#include <bits/stdc++.h>

using namespace std;

const int maxn = 1000005;

int n, h[maxn], r[maxn], a[maxn], xo[maxn], ans;
char s[maxn];

void solve() {
 for (int i = 1; i <= n; i++)
 if (a[i] == 1) {
 int j, mx;
 ans = max(ans, 1);
 for (j = i + 1, mx = 1; j <= n && a[j] != 1; j++) {
 mx = max(mx, a[j]);
 if (j - mx >= 0 && (xo[j] ^ xo[j - mx]) == r[mx])
 ans = max(ans, mx);
 }
 i = j - 1;
 }
}

int main() {
 int Tt;
 scanf("%d", &Tt);
 srand(time(0));
 for (int i = 1; i <= maxn; i++)

2026/02/04 01:58 5/5 简况

CVBB ACM Team - https://wiki.cvbbacm.com/

 h[i] = RAND_MAX > maxn ? rand() : rand() * rand(), r[i] = r[i - 1] ^
h[i];
 while (Tt--) {
 scanf("%d", &n);
 for (int i = 1; i <= n; i++) {
 scanf("%d", &a[i]);
 xo[i] = xo[i - 1] ^ h[a[i]];
 }
 ans = 0;
 solve();
 reverse(a + 1, a + n + 1);
 for (int i = 1; i <= n; i++)
 xo[i] = xo[i - 1] ^ h[a[i]];
 solve();
 printf("%d\n", ans);
 }
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:alchemist:pku_campus_2019&rev=1588906424

Last update: 2020/05/08 10:53

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:alchemist:pku_campus_2019&rev=1588906424

	简况
	总结与反思
	cmx
	lpy
	xsy

	题解
	A.Ball
	B.Seal
	C.Parade
	D.Circuit
	E.Coprime
	F.Graduation
	G.Go and Oreo
	H.Homomorphism
	I.Chamber of Braziers
	J.Matrix of Determinants
	K.Winner Winner, Chicken Dinner!

	补题
	I. Chamber of Braziers

