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2020-2021 BUAA ICPC Team Supplementary
Training 02

比赛网址

训练结果

时间:‘’2020/8/6’’
rank:‘’5/18’’
完成情况：‘’6/8/10’’

题解

A. Hacker Cups and Balls

题意

给了一个数列,每次操作一个区间,把里面的数顺序或逆序排序.求最后位置在最中间的数的值

题解

我们可以二分答案,小于他的数设为零,大于等于它的数设为一.区间操作就变成了零一的排序,这个用线段树
就可以实现.答案确实可以保证二分的性质.

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
int read()
{
    int k=0,f=1;char c=getchar();
    for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
    for(;isdigit(c);c=getchar()) k=k*10+c-'0';return k*f;
}
const int N=100055;
int n,m,a[N],b[N],c[N];
int sum[N<<2],la[N<<2];
#define lson k<<1,l,mid
#define rson k<<1|1,mid+1,r
void pu(int k)

https://codeforces.com/group/azDPdoF24f/contest/290092
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{
    sum[k]=sum[k<<1]+sum[k<<1|1];
}
void pd(int k,int l,int r)
{
    if(!la[k])
    {
        la[k<<1]=la[k<<1|1]=sum[k<<1]=sum[k<<1|1]=0;
        la[k]=-1;
    }
    else if(la[k]==1)
    {
        la[k<<1]=la[k<<1|1]=1;
        la[k]=-1;
        int mid=l+r>>1;
        sum[k<<1]=mid-l+1;
        sum[k<<1|1]=r-mid;
    }
}
void build(int k,int l,int r,int x)
{
    la[k]=-1;
    if(l==r) {sum[k]=(a[l]>=x);return;}
    int mid=l+r>>1;
    build(lson,x);build(rson,x);
    pu(k);
}
void ch(int k,int l,int r,int a,int b,int v)
{
    if(a>b) return;
    if(a<=l&&b>=r)
    {
        if(v==0) sum[k]=la[k]=0;
        else sum[k]=r-l+1,la[k]=1;
        return;
    }
    int mid=l+r>>1;pd(k,l,r);
    if(a<=mid) ch(lson,a,b,v);
    if(b>mid) ch(rson,a,b,v);
    pu(k);
}
int query(int k,int l,int r,int a,int b)
{
    if(a<=l&&b>=r) return sum[k];
    int mid=l+r>>1,res=0;pd(k,l,r);
    if(a<=mid) res=query(lson,a,b);
    if(b>mid) res+=query(rson,a,b);
    return res;
}
int chk(int x)
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{
    build(1,1,n,x);
    for(int i=1;i<=m;i++)
    {
        if(b[i]<c[i])
        {
            int s=query(1,1,n,b[i],c[i]);
            ch(1,1,n,c[i]-s+1,c[i],1);
            ch(1,1,n,b[i],c[i]-s,0);
        }
        else if(b[i]>c[i])
        {
            int s=query(1,1,n,c[i],b[i]);
            ch(1,1,n,c[i],c[i]+s-1,1);
            ch(1,1,n,c[i]+s,b[i],0);
        }
    }
//  cout<<x<<endl;
//  for(int i=1;i<=n;i++)
//      cout<<query(1,1,n,i,i)<<endl;
    return query(1,1,n,(n+1)/2,(n+1)/2);
}
int main()
{
    n=read();m=read();
    for(int i=1;i<=n;i++)
        a[i]=read();
    for(int i=1;i<=m;i++)
        b[i]=read(),c[i]=read();
    int l=1,r=n,mid,res=n;
    while(r>=l)
    {
        mid=l+r>>1;
        if(chk(mid)) res=mid,l=mid+1;
        else r=mid-1;
    }
    cout<<res<<endl;
    return 0;
}

C. Crazy Dreamoon

题意

一个2000*2000矩形上有$n$条线段，问这$n$条线段覆盖了多少格点。
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题解

直接走一遍每个线段，依次打标记即可（注意整点附近的精度处理）

#include<bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
typedef long long LL;
typedef pair<int,int> PII;
#define X first
#define Y second
inline int read()
{
    int x=0,f=1;char c=getchar();
    while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
    while(isdigit(c)){x=x*10+c-'0';c=getchar();}
    return x*f;
}
const int maxn=2010;
const double eps=1e-6;
int n,X1,Y1,X2,Y2,ans;
bool have[maxn][maxn];
double f(double x)
{
    return (double)((Y2-Y1)*x+X2*Y1-X1*Y2)/(double)(X2-X1);
}
int main()
{
    n=read();
    for(int i=1;i<=n;i++)
    {
        X1=read();Y1=read();X2=read();Y2=read();
        if(X1==X2)continue;
        if(Y1==Y2)continue;
        if(X1>X2)swap(X1,X2),swap(Y1,Y2);
        for(int x=X1;x<X2;x++)
        {
            double f1=f((double)x),f2=f((double)(x+1.0));
            if(f1>f2)swap(f1,f2);
            if(fabs(f1-ceil(f1))<eps)
            {
                f1=(double)ceil(f1);
            }
            if(fabs(f2-ceil(f2))<eps)
            {
                for(int y=floor(f1);y<floor(f2);y++)have[x][y]=1;
                continue;
            }
            for(int y=floor(f1);y<=floor(f2);y++)have[x][y]=1;
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        }
    }
    for(int i=0;i<=2000;i++)for(int j=0;j<=2000;j++)if(have[i][j])ans++ ;
    printf("%d\n",ans);
    return 0;
}

D.Forest Game

题意

现在有一棵$n$个节点的树，每次从中删去一个点，得到这个点所在树的大小的代价。问给定一棵树随机
删除的所有情况代价和

题解

每一种删除方案对应一种排列 我们考虑每个点对的贡献，每个点对中一个点对另一个点产生贡献当且仅当
另一个点是这两点之间所有点中第一个删除的，那么距离为$m-1$的点对(即路径上有$m$个点)产生的代
价为$2 \times C_{n}^{m}(m-1)!(n-m)!$

那么我们只需要计算每种距离的点对有几个

使用点分治+$fft$统计

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 400005,maxm = 100005,INF = 1000000000;
inline int read(){
    int out = 0,flag = 1; char c = getchar();
    while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c =
getchar();}
    return out * flag;
}
int n,h[maxn],ne = 1;
struct EDGE{int to,nxt;}ed[maxn];
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inline void build(int u,int v){
    ed[++ne] = (EDGE){v,h[u]}; h[u] = ne;
    ed[++ne] = (EDGE){u,h[v]}; h[v] = ne;
}
struct E{
    double a,b;
    E(){}
    E(double x,double y):a(x),b(y) {}
    E(int x,int y):a(x),b(y) {}
    inline E operator =(const int& b){
        this->a = b; this->b = 0;
        return *this;
    }
    inline E operator =(const double& b){
        this->a = b; this->b = 0;
        return *this;
    }
    inline E operator /=(const double& b){
        this->a /= b; this->b /= b;
        return *this;
    }
};
inline E operator *(const E& a,const E& b){
    return E(a.a * b.a - a.b * b.b,a.a * b.b + a.b * b.a);
}
inline E operator *=(E& a,const E& b){
    return a = E(a.a * b.a - a.b * b.b,a.a * b.b + a.b * b.a);
}
inline E operator +(const E& a,const E& b){
    return E(a.a + b.a,a.b + b.b);
}
inline E operator -(const E& a,const E& b){
    return E(a.a - b.a,a.b - b.b);
}
const double pi = acos(-1);
int R[maxn];
void fft(E* a,int n,int f){
    for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
    for (int i = 1; i < n; i <<= 1){
        E wn(cos(pi / i),f * sin(pi / i));
        for (int j = 0; j < n; j+= (i << 1)){
            E w(1,0);
            for (int k = 0; k < i; k++,w *= wn){
                E x = a[j + k],y = w * a[j + k + i];
                a[j + k] = x + y; a[j + k + i] = x - y;
            }
        }
    }
    if (f == -1) for (int i = 0; i < n; i++) a[i] /= n;
}
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LL ans[maxn];
int F[maxn],fa[maxn],siz[maxn],vis[maxn],N,rt;
void getrt(int u){
    siz[u] = 1; F[u] = 0;
    Redge(u) if (!vis[to = ed[k].to] && to != fa[u]){
        fa[to] = u; getrt(to);
        siz[u] += siz[to];
        F[u] = max(F[u],siz[to]);
    }
    F[u] = max(F[u],N - siz[u]);
    if (F[u] < F[rt]) rt = u;
}
int dep[maxn],md;
E A[maxn],B[maxn];
void dfs(int u){
    A[dep[u]].a+=1; siz[u] = 1; md = max(md,dep[u]);
    Redge(u) if (!vis[to = ed[k].to] && to != fa[u]){
        fa[to] = u; dep[to] = dep[u] + 1; dfs(to);
        siz[u] += siz[to];
    }
}
void dfs1(int u){
    B[dep[u]].a+=1; md = max(md,dep[u]);
    Redge(u) if (!vis[to = ed[k].to] && to != fa[u])
        dfs1(to);
}
void solve(int u){
    vis[u] = true; siz[u] = N; fa[u] = 0;
    for (int i = 0; i <= N; i++) A[i] = B[i] = 0;
    dep[u] = 0; A[0] = 1; md = 0;
    Redge(u) if (!vis[to = ed[k].to]){
        fa[to] = u; dep[to] = 1; dfs(to);
    }
    int m = (md << 1),L = 0,n = 1;
    while (n <= m) n <<= 1,L++;
    for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L -
1));
    for (int i = md + 1; i < n; i++) A[i] = 0;
    fft(A,n,1);
    for (int i = 0; i < n; i++) A[i] *= A[i];
    fft(A,n,-1);
    for (int i = 0; i < n; i++) ans[i + 1] += (LL)(A[i].a + 0.1);
    Redge(u) if (!vis[to = ed[k].to]){
        md = 1; dfs1(to);
        m = (md << 1),L = 0,n = 1;
        while (n <= m) n <<= 1,L++;
        for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) <<
(L - 1));
        fft(B,n,1);
        for (int i = 0; i < n; i++) B[i] *= B[i];
        fft(B,n,-1);
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        for (int i = 0; i < n; i++) ans[i + 1] -= (LL)(B[i].a + 0.1);
        for (int i = 0; i < n; i++) B[i] = 0;
    }
    Redge(u) if (!vis[to = ed[k].to]){
        N = siz[to]; F[rt = 0] = INF; getrt(to);
        solve(rt);
    }
}
const int M = 1000000007;
int Qpow(int a,int b){
    int ans = 1;
    for (; b; b >>= 1,a = 1ll * a * a % M)
        if (b & 1) ans = 1ll * ans * a % M;
    return ans;
}
int f[maxn],fv[maxn];
int C(int x,int y){
    return 1ll * f[x] * fv[y] % M * fv[x - y] % M;
}
void calwork(){
    f[0] = 1;
    for (int i = 1; i <= n; i++) f[i] = 1ll * f[i - 1] * i % M;
    fv[0] = 1;
    for (int i = 1; i <= n; i++) fv[i] = Qpow(f[i],M - 2);
    int Ans = 1ll * f[n] * n % M;
    for (int i = 1; i <= n; i++) ans[i] = (ans[i] / 2) % M;
    //REP(i,n) printf("dis %d  cnt %lld\n",i,ans[i]);
    //cout << C(3,2) << endl;
    for (int i = 2; i <= n; i++){
        if (!ans[i]) continue;
        Ans = (Ans + 2ll * C(n,i) % M * f[i - 1] % M * f[n - i] % M *
ans[i] % M) % M;
    }
    printf("%d\n",Ans);
}
int main(){
    n = read();
    for (int i = 1; i < n; i++) build(read(),read());
    F[rt = 0] = INF; N = n; getrt(1);
    solve(rt);
    calwork();
    return 0;
}

E. Lines Game
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题意

有 $n$ 条线段,端点为 $(0,i) ,(1,p_i)$ 每次可以花 $v_i$ 的价值选线段 $i$ ,把 $i$ 和 与 $i$ 相交的线段全
部删了, 问删完所有线段的最小代价.

题解

如果存在 $i<j ,p_i>pj$ 那么选 $j$ 就一定不会选 $i$ ,因为 $i$ 能删的线段 $j$ 一定能删.

所以答案的 $p_i$ 一定是单调的.我们可以推出一个dp 方程 $dp_j= dp_i+v_j$ 其中的 $i$ 必须满足所有的
$ i < k < j , p_k>p_j  ||  p_k<p_i$

发现这个dp可以用cdq分治优化,把区间分成两段,我们左右两边按 $p_i$ 排序,左边维护编号单调递减的单
调栈, 因为如果出现 $i<j ,p_i<p_j$ $i$ 就不能用了更新答案了,因为选 $i$ 就删不了 $j$

右边维护编号单调递增的单调栈, 因为如果出现 $i>j ,p_i<p_j$ 选 $j$ 就一定会删掉 $i$ 这样右边对于 $i$
, 他能选到左边的线段 $p$ 的范围就是右边栈顶的位置加一到 $p_i$ ,用线段树维护左边的dp值并区间查询
答案就行.

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
#define int long long
using namespace std;
int read()
{
    int k=0,f=1;char c=getchar();
    for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
    for(;isdigit(c);c=getchar()) k=k*10+c-'0';return k*f;
}
const int N=100055,inf=1ll<<50;
int n,m,a[N],b[N],c[N],v[N],f[N];
int s[N],s2[N];
int mn[N<<2];
bool cmp(int x,int y)
{
    return a[x]<a[y];
}
#define lson k<<1,l,mid
#define rson k<<1|1,mid+1,r
void pu(int k)
{
    mn[k]=min(mn[k<<1],mn[k<<1|1]);
}
void build(int k,int l,int r)
{
    if(l==r) {mn[k]=inf;return;}
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    int mid=l+r>>1;
    build(lson);build(rson);
    pu(k);
}
void ch(int k,int l,int r,int a,int b)
{
    if(l==r) {mn[k]=b;return;}
    int mid=l+r>>1;
    if(a<=mid) ch(lson,a,b);
    else ch(rson,a,b);
    pu(k);
}
int query(int k,int l,int r,int a,int b)
{
    if(a<=l&&b>=r) return mn[k];
    int mid=l+r>>1,res=inf;
    if(a<=mid) res=query(lson,a,b);
    if(b>mid) res=min(res,query(rson,a,b));
    pu(k);
    return res;
}
void solve(int l,int r)
{
    if(l==r) return;
    int mid=l+r>>1,tp=0,tp2=0,l1=mid-l+1,l2=r-mid;
    solve(l,mid);
    for(int i=1;i<=l1;i++)
        b[i]=l+i-1;
    for(int i=1;i<=l2;i++)
        c[i]=mid+i;
    sort(b+1,b+1+l1,cmp);sort(c+1,c+1+l2,cmp);
    int now=1;
    for(int i=1;i<=l2;i++)
    {
        while(now<=l1&&a[b[now]]<a[c[i]])
        {
            while(tp&&s[tp]<b[now])
                ch(1,0,n,a[s[tp]],inf),tp--;
            ch(1,0,n,a[s[++tp]=b[now]],f[b[now]]);
            now++;
        }
        while(tp2&&s2[tp2]>c[i]) tp2--;
        int pos=0;
        if(tp2) pos=a[s2[tp2]]+1;
        f[c[i]]=min(f[c[i]],v[c[i]]+query(1,0,n,pos,a[c[i]]));
        s2[++tp2]=c[i];
    }
    for(int i=1;i<=l1;i++)
        ch(1,0,n,a[b[i]],inf);
    solve(mid+1,r);
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}
main()
{
    n=read()+1;a[n]=n;
    for(int i=1;i<=n;i++)
        f[i]=inf;
    for(int i=1;i<n;i++)
        a[i]=read();
    for(int i=1;i<n;i++)
        v[i]=read();
    build(1,0,n);
    solve(0,n);
//  for(int i=1;i<=n;i++)
//      cout<<f[i]<<endl;
    cout<<f[n]<<endl;
    return 0;
}

G. Dreamoon and NightMarket

题意

给了 $n$ 个有价值的物品,求价值第 $k$ 小的集合.

题解

我们用优先队列存已有的集合,每次我们取出最小的集合,设该集合价值和为 $v$ ,最大价值的物品为 $a_i$ ,
我们就加入 $v-a_i+a_{i+1}$ 和 $v+a_{i+1}$ ,可以保证队列里面的集合一定有最小的.

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#define ll long long
using namespace std;
int read()
{
    int k=0,f=1;char c=getchar();
    for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
    for(;isdigit(c);c=getchar()) k=k*10+c-'0';return k*f;
}
const int N=200055;
int n,m,a[N];
typedef pair<ll,int> P;
priority_queue<P, vector<P>, greater<P> > q;
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int main()
{
    n=read();m=read();
    for(int i=1;i<=n;i++)
        a[i]=read();
    sort(a+1,a+1+n);
    q.push(P(a[1],1));
    for(int i=1;i<m;i++)
    {
        P k=q.top();q.pop();
        if(k.second<n)
        {
            q.push(P(k.first+a[k.second+1],k.second+1));
            q.push(P(k.first-a[k.second]+a[k.second+1],k.second+1));
        }
    }
    cout<<(q.top()).first<<endl;
    return 0;
}

F. Lonely Dreamoon 2

题意

调整一个序列的顺序，使得$min\{|a_i-a_{i-1}|\}$最大。

题解

分奇偶讨论，偶数是$a_i$和$a_{i+\frac{n}{2}}$相邻，奇数就找一个$|a_i-a_{i+\frac{n}{2}}|$最小的
位置拿出来。

H. Split Game

题意

给一个多边形，全在第一象限，有一条过原点的直线，问最多能把这个多边形划分成多少区域

题解

先考虑给定一条分界线怎么数区域，我的做法是先算出所有交点然后看这条线两侧有多少个山峰，便是多
少个区域，我们便可以从这个思路继续拓展，继续想直线在旋转的过程中答案的增量，十分善良的是数据
已经是按照逆时针转好的，注意讨论这个点前驱后继组成的形状。
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#include<bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
typedef long long LL;
typedef pair<int,int> PII;
#define X first
#define Y second
inline int read()
{
    int x=0,f=1;char c=getchar();
    while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
    while(isdigit(c)){x=x*10+c-'0';c=getchar();}
    return x*f;
}
const int maxn=100010;
struct Point{
    LL x,y;
    Point() {}
    Point(double _1,double _2):x(_1),y(_2) {}
    Point operator - (const Point&s) const {return Point(x-s.x,y-s.y);}
    LL operator * (const Point&s) const {return x*s.y-y*s.x;}
    LL len() {return x*x+y*y;}
}a[maxn];
int n,N,ans,now_ans,R[maxn];
bool del[maxn];
bool cmp(int xx,int yy)
{
    return (double)a[xx].y/(double)a[xx].x<(double)a[yy].y/(double)a[yy].x;
}
int main()
{
    n=read();
    for(int i=1;i<=n;i++)scanf("%lld%lld",&a[i].x,&a[i].y);
    a[0]=a[n];a[n+1]=a[1];
    for(int i=1;i<=n;i++)if((a[i]-a[i+1])*(a[i]-a[i-1])==0)del[i]=1;
    for(int i=1;i<=n;i++)if(!del[i])a[++N]=a[i];
    a[0]=a[n];a[N+1]=a[1];
    n=N;
    for(int i=1;i<=n;i++)R[i]=i;
    sort(R+1,R+N+1,cmp);
    int i=1;
    while(i<=n)
    {
        int tmp=0,j;
        for(j=i;j<=n && a[R[i]]*a[R[j]]==0;j++)
        {
            int pos=R[j];
            if(a[pos]*a[pos-1]>=0 && a[pos]*a[pos+1]>0)
            {
                if((a[pos-1]-a[pos])*(a[pos+1]-a[pos])>0)now_ans++;
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                else tmp++;
            }
            if(a[pos]*a[pos-1]<0 && a[pos]*a[pos+1]<=0)
            {
                if((a[pos-1]-a[pos])*(a[pos+1]-a[pos])<0)now_ans--;
                else tmp--;
            }
        }
        if(tmp>0)ans=max(ans,now_ans+tmp);
        else ans=max(ans,now_ans);
        now_ans+=tmp;
        i=j;
    }
    printf("%d\n",ans+1);
    return 0;
}

J. Zero Game

题意

有一个$01$串，允许进行至多$K$次操作，每次移动一个数的位置，问能构造出最长的连续$0$的长度

题解

把原串中连续$0$和$1$统计一下长度，那么序列就变成了一个$0$和$1$交错的序列，我们无视开头的$1$，
每一串$0$和下一串$1$视作放在一个位置，那么记$A[i]$为$0$的前缀和$B[i]$为$1$的前缀和，
设$f[i]$为$i$位置的$0$串结尾的最长长度

那么对于给定的$K$有以下转移方程：

$f[i]=max\{A[i]-A[j]+K-(B[i-1]-B[j])\}$

用单调队列转移即可

复杂度$O(NQ)$

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
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#include<set>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 1000005,maxm = 100005,INF = 0x3f3f3f3f;
inline int read(){
    int out = 0,flag = 1; char c = getchar();
    while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
    while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c =
getchar();}
    return flag ? out : -out;
}
int n,m,cnt,K;
char s[maxn];
int A[maxn],B[maxn];
void init(){
    scanf("%s",s + 1); n = strlen(s + 1);
    int i = 1;
    while (s[i] == '1') i++;
    while (i <= n){
        int j = i;
        while (j < n && s[j + 1] == s[i]) j++;
        A[++m] = j - i + 1;
        j = i = j + 1;
        while (j < n && s[j + 1] == s[i]) j++;
        if (i <= n) B[m] = j - i + 1;
        else B[m] = 0;
        i = j + 1;
    }
    for (int i = 1; i <= m; i++){
        A[i] += A[i - 1],B[i] += B[i - 1];
        //printf("[%d] ",B[i]);
    }
    //puts("");
    for (int i = 1; i <= n; i++) cnt += (s[i] == '0');
 
}
int q[maxn],head,tail;
void work(){
    q[head = tail = 1] = 0;
    int ans = 0;
    for (int i = 1; i <= m; i++){
        while (head <= tail && B[i - 1] - B[q[head]] > K) head++;
        if (head <= tail) ans = max(ans,A[i] - B[i - 1] + K + B[q[head]] -
A[q[head]]);
        else ans = max(ans,A[i] - A[i - 1] + K);
        //printf("[%d] %d %d\n",ans,A[q[head]],B[q[tail]]);
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        while (head <= tail && B[i] - A[i] >= B[q[tail]] - A[q[tail]])
tail--;
        q[++tail] = i;
    }
    printf("%d\n",min(ans,cnt));
}
int main(){
    init();
    int Q = read();
    while (Q--){
        K = read();
        work();
    }
    return 0;
}

训练实况

开局 fyh看E hxm看A wxg中途加入看到G有人过就看G

wxg想出G开写G

0:35 wxg过G，fyh看C 和hxm讨论出C做法开写C

0:56 fyh过C，wxg想出A，开写A

1:24 wxg过A fyh看H，J 成功给hxm翻译错题，hxm想出错题做法，开写J

1：40 hxm没过J，重新读题，发现读错题，之后重新想J，wxg想E fyh想I和H

2：56hxm过J，推出D，讨论出做法后开写D并调，fyh写H并调

4:24 hxm过D，wxg想出E，开写E

4:58 wxg绝杀E fyh没过H

训练总结

wxg: 罚时永远的痛

hxm:这一场发挥不错，但在罚时方面还需改进。

fyh:被一道不卡精度的题愣是生生卡到了精度，以后再也不用atan2进行极角排序了呜呜呜
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