
2026/01/14 10:06 1/13 2020牛客暑期多校训练营（第二场）

CVBB ACM Team - https://wiki.cvbbacm.com/

2020牛客暑期多校训练营（第二场）

比赛网址

训练结果

时间:2020-7-13 12:00~17:00
rank:145/1159
完成情况：4/8/11

题解

题目名字

题意

题解

C.Cover the Tree

题意

用尽量少的路径覆盖一棵树的所有边

题解

solved by hxm

路径显然最优时从一个叶子出发，到另一个叶子结束。记叶子节点个数为m，那么答案应该就是$\lceil
\frac{m}{2} \rceil$

问题是如何找到一组解

选一个点作为根节点，如果能将不同子树里的叶子匹配，就能做到完全覆盖。那么只需要每次选剩余叶子
最多的两个子树匹配。

容易发现，这样操作，只需要最大的子树里叶子节点个数不超过总个数的一半。

只需要随意选一个点，如果不满足条件，就往那个叶子最多的子树走，最后一定能走到一个合法的点。

https://ac.nowcoder.com/acm/contest/5667#question

Last
update:
2020/07/17
17:51

2020-2021:teams:die_java:front_page_summertrain2 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:die_java:front_page_summertrain2&rev=1594979502

https://wiki.cvbbacm.com/ Printed on 2026/01/14 10:06

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#include<set>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 200005,maxm = 400005,INF = 0x3f3f3f3f;
inline int read(){
 int out = 0,flag = 1; char c = getchar();
 while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
 while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c =
getchar();}
 return flag ? out : -out;
}
int n,h[maxn],ne,de[maxn];
struct EDGE{
 int to,nxt;
}ed[maxm];
void build(int u,int v){
 ed[++ne] = (EDGE){v,h[u]}; h[u] = ne;
 ed[++ne] = (EDGE){u,h[v]}; h[v] = ne;
 de[u]++; de[v]++;
}
int siz[maxn],rt,tot;
void dfs1(int u,int ff){
 if (de[u] == 1) siz[u] = 1;
 else {
 Redge(u) if ((to = ed[k].to) != ff){
 dfs1(to,u);
 siz[u] += siz[to];
 }
 }
}
void dfs2(int u,int ff){
 int flag = 1;
 Redge(u) if ((to = ed[k].to) != ff){
 if (siz[to] * 2 > tot){
 flag = 0;

2026/01/14 10:06 3/13 2020牛客暑期多校训练营（第二场）

CVBB ACM Team - https://wiki.cvbbacm.com/

 dfs2(to,u);
 }
 if (!flag) break;
 }
 if (flag) rt = u;
}
int m,pos[maxn],len[maxn];
vector<int> leaf[maxn];
struct node{
 int i;
};
inline bool operator <(const node& a,const node& b){
 return len[a.i] - pos[a.i] < len[b.i] - pos[b.i];
}
priority_queue<node> q;
void dfs3(int u,int ff){
 if (de[u] == 1) leaf[m].push_back(u),len[m]++;
 else {
 Redge(u) if ((to = ed[k].to) != ff){
 dfs3(to,u);
 }
 }
}
int main(){
 n = read();
 if (n == 1){printf("1\n1 1\n"); return 0;}
 if (n == 2){printf("1\n1 2\n"); return 0;}
 for (int i = 1; i < n; i++) build(read(),read());
 for (int i = 1; i <= n; i++){
 if (de[i] == 1) tot++;
 else rt = i;
 }
 dfs1(rt,0);
 dfs2(rt,0);
 //cout << rt << endl;
 Redge(rt){
 m++;
 dfs3(to = ed[k].to,rt);
 }
 //REP(i,m) cout << len[i] << endl;
 REP(i,m) q.push((node){i});
 printf("%d\n",(tot + 1) / 2);
 int cnt = 0,a,b;
 while (tot - cnt > 1){
 a = q.top().i; q.pop();
 b = q.top().i; q.pop();
 printf("%d %d\n",leaf[a][pos[a]++],leaf[b][pos[b]++]);
 if (pos[a] < len[a]) q.push((node){a});
 if (pos[b] < len[b]) q.push((node){b});
 cnt += 2;
 }

Last
update:
2020/07/17
17:51

2020-2021:teams:die_java:front_page_summertrain2 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:die_java:front_page_summertrain2&rev=1594979502

https://wiki.cvbbacm.com/ Printed on 2026/01/14 10:06

 if (tot & 1){
 a = q.top().i;
 printf("%d %d\n",leaf[a][pos[a]++],rt);
 }
 return 0;
}

D.Duration

solved by hxm 水题

F.Fake Maxpooling

题意

一个$n \times m$的网格，每个格子(x,y)里写着$lcm(x,y)$。

现在用一个$k \times k$的框去选中一些格子，得到其中最大值。

求所有选取方法最大值的总和。

题解

solved by hxm

暴力$O(nmlogn)$求出lcm，然后竖着用m个单调队列维护最大值，然后再用一个单调队列维护单调队
列的最大值，即可求出当前区域的最大值。

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#include<set>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>

2026/01/14 10:06 5/13 2020牛客暑期多校训练营（第二场）

CVBB ACM Team - https://wiki.cvbbacm.com/

using namespace std;
const int maxn = 5005,maxm = 100005,INF = 0x3f3f3f3f;
inline int read(){
 int out = 0,flag = 1; char c = getchar();
 while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
 while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c =
getchar();}
 return flag ? out : -out;
}
int gcd(int a,int b) {
 return !b ? a : gcd(b,a % b);
}
int A[maxn][maxn],n,m,K;
int Q[maxn][maxn],H[maxn],T[maxn];
int q[maxn],pos[maxn],head,tail;
int main(){
 n = read(); m = read(); K = read();
 REP(i,n) REP(j,m) A[i][j] = i * j / gcd(i,j);
 REP(i,m) H[i] = 1;
 LL ans = 0;
 for (int i = 1; i <= n; i++){
 for (int j = 1; j <= m; j++){
 while (H[j] <= T[j] && i - Q[j][H[j]] >= K) H[j]++;
 while (T[j] >= H[j] && A[i][j] >= A[Q[j][T[j]]][j]) T[j]--;
 Q[j][++T[j]] = i;
 }
 if (i >= K){
 head = 1; tail = 0;
 for (int j = 1; j <= m; j++){
 while (head <= tail && j - pos[head] >= K) head++;
 while (head <= tail && A[Q[j][H[j]]][j] >= q[tail]) tail--;
 q[++tail] = A[Q[j][H[j]]][j];
 pos[tail] = j;
 if (j >= K) ans += q[head];
 }
 }
 }
 printf("%lld\n",ans);
 return 0;
}

H.Happy Triangle

题意

一个multiset，支持如下操作：

插入一个数x
从中删除一个数x（如果有重复的，只删除一个）

Last
update:
2020/07/17
17:51

2020-2021:teams:die_java:front_page_summertrain2 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:die_java:front_page_summertrain2&rev=1594979502

https://wiki.cvbbacm.com/ Printed on 2026/01/14 10:06

给定x，问集合中是否存在两个数a,b，使得a,b,x组成一个非退化三角形。

题解

补题 by fyh

询问即问是否存在两个数a,b，使得$|a-b|<x<a+b$。这个很明显是一个区间覆盖问题，但是因为集合中
两两组成的区间是n^2级别的，考虑减少区间：$a>b>c$,其中(a,b)与(a,c)组成的开区间分别是$(a-
b,a+b),(a-c,a+c)$。后者是完全被前者包含的，所以对于每一个数，只需要找他的前驱，用线段树维护一
下这n个区间的并即可。

#include<bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
typedef long long LL;
typedef pair<int,int> PII;
#define X first
#define Y second
inline int read()
{
 int x=0,f=1;char c=getchar();
 while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
 while(isdigit(c)){x=x*10+c-'0';c=getchar();}
 return x*f;
}
const int maxn=200010;
int n,q,tp[maxn],a[maxn],b[maxn],tag[maxn<<2],w[maxn<<2];
multiset <int> S;
multiset <int>::iterator it,it2;
void pushdown(int L,int R,int o)
{
 int mid=L+R>>1,lo=o<<1,ro=lo|1;
 tag[lo]+=tag[o];tag[ro]+=tag[o];
 w[lo]+=tag[o];w[ro]+=tag[o];
 tag[o]=0;
}
void update(int L,int R,int o,int ql,int qr,int v)
{
 if(L==ql && R==qr)
 {
 w[o]+=v;
 tag[o]+=v;
 return;
 }
 pushdown(L,R,o);
 int mid=L+R>>1,lo=o<<1,ro=lo|1;
 if(qr<=mid)update(L,mid,lo,ql,qr,v);
 else if(ql>mid)update(mid+1,R,ro,ql,qr,v);

2026/01/14 10:06 7/13 2020牛客暑期多校训练营（第二场）

CVBB ACM Team - https://wiki.cvbbacm.com/

 else update(L,mid,lo,ql,mid,v),update(mid+1,R,ro,mid+1,qr,v);
}
int query(int L,int R,int o,int qx)
{
 if(L==R)return w[o];
 pushdown(L,R,o);
 int mid=L+R>>1,lo=o<<1,ro=lo|1;
 if(qx<=mid)return query(L,mid,lo,qx);
 else return query(mid+1,R,ro,qx);
}
void insert(int A)
{
 int pos=lower_bound(b+1,b+n+1,A)-b,l,r;
 it=S.lower_bound(A);
 if(it!=S.end() && it!=S.begin())
 {
 it--;it2=it;it++;
 l=lower_bound(b+1,b+n+1,(*it)-*(it2))-b;
 r=lower_bound(b+1,b+n+1,(*it)+*(it2))-b-1;
 if(*it-*it2==b[l])l++;
 update(1,n,1,l,r,-1);
 }
 if(it!=S.end())
 {
 l=lower_bound(b+1,b+n+1,*it-A)-b;
 r=lower_bound(b+1,b+n+1,*it+A)-b-1;
 if(*it-A==b[l])l++;
 update(1,n,1,l,r,1);
 }
 if(it!=S.begin())
 {
 it--;it2=it;it++;
 l=lower_bound(b+1,b+n+1,A-*it2)-b;
 r=lower_bound(b+1,b+n+1,*it2+A)-b-1;
 if(A-*it2==b[l])l++;
 update(1,n,1,l,r,1);
 }
 S.insert(A);
}
void delt(int A)
{
 int pos=lower_bound(b+1,b+n+1,A)-b,l,r;
 it=S.find(A);
 S.erase(it);
 it=S.lower_bound(A);
 if(it!=S.end() && it!=S.begin())
 {
 it--;it2=it;it++;
 l=lower_bound(b+1,b+n+1,(*it)-*(it2))-b;
 r=lower_bound(b+1,b+n+1,(*it)+*(it2))-b-1;
 if(*it-*it2==b[l])l++;

Last
update:
2020/07/17
17:51

2020-2021:teams:die_java:front_page_summertrain2 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:die_java:front_page_summertrain2&rev=1594979502

https://wiki.cvbbacm.com/ Printed on 2026/01/14 10:06

 update(1,n,1,l,r,1);
 }
 if(it!=S.end())
 {
 l=lower_bound(b+1,b+n+1,*it-A)-b;
 r=lower_bound(b+1,b+n+1,*it+A)-b-1;
 if(*it-A==b[l])l++;
 update(1,n,1,l,r,-1);
 }
 if(it!=S.begin())
 {
 it--;it2=it;it++;
 l=lower_bound(b+1,b+n+1,A-*it2)-b;
 r=lower_bound(b+1,b+n+1,*it2+A)-b-1;
 if(A-*it2==b[l])l++;
 update(1,n,1,l,r,-1);
 }
}
void ask(int x)
{
 int pos=lower_bound(b+1,b+n+1,x)-b;
 if(query(1,n,1,pos))puts("Yes");
 else puts("No");
}
int main()
{
 q=read();
 for(int i=1;i<=q;i++)tp[i]=read(),a[i]=b[i]=read();
 sort(b+1,b+q+1);
 n=unique(b+1,b+q+1)-b-1;
 b[n+1]=1e9;
 for(int i=1;i<=q;i++)
 {
 if(tp[i]==1)insert(a[i]);
 else if(tp[i]==2)delt(a[i]);
 else ask(a[i]);
 }
 return 0;
}

题目名字

题意

题解

2026/01/14 10:06 9/13 2020牛客暑期多校训练营（第二场）

CVBB ACM Team - https://wiki.cvbbacm.com/

J.Just Shuffle

题意

一个排列初始时是$1,2,\ldots,n$，存在某种置换p,使得排列在置换k次后的排列为A_1,\ldots,A_n。
求置换p。

题解

solved by fyh

本题的一大特性是k是质数，也就是k模任何数都非0。

置换其实就是若干个循环。每个循环都是独立的，现考虑某个长度为$size$的环，置换k次的结果是等
效于置换为$k\%size$的结果。设$k\%size=m$，则我们当前得到的环其实是走m步的结果，我们要得到
走1步的结果，便可以考虑在这个环上每步都好几倍，最后等效为走一步，即解$m*k\%size=1$的模方程
的x。至此，我们成功构造出了原置换。

#include<bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
typedef long long LL;
typedef pair<int,int> PII;
#define X first
#define Y second
inline int read()
{
 int x=0,f=1;char c=getchar();
 while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
 while(isdigit(c)){x=x*10+c-'0';c=getchar();}
 return x*f;
}
const int maxn=100010;
int n,k,to[maxn],col[maxn],cnt,size[maxn],ans[maxn];
bool vis[maxn];
vector <int> V[maxn];
int main()
{
 n=read();k=read();
 for(int i=1;i<=n;i++)to[i]=read();
 for(int i=1;i<=n;i++)
 if(!vis[i])
 {
 col[i]=++cnt;
 V[cnt].push_back(i);
 int now=i;
 while(!vis[to[now]])

Last
update:
2020/07/17
17:51

2020-2021:teams:die_java:front_page_summertrain2 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:die_java:front_page_summertrain2&rev=1594979502

https://wiki.cvbbacm.com/ Printed on 2026/01/14 10:06

 V[cnt].push_back(to[now]),
 vis[to[now]]=1,col[to[now]]=cnt,
 now=to[now],size[cnt]++;
 }
 for(int i=1;i<=cnt;i++)
 {
 if(size[i]==1)ans[V[i][0]]=V[i][0];
 else
 {
 int m=k%size[i],x=0;
 while(x*m%size[i]!=1)x++;
 for(int j=0;j<V[i].size();j++)
 {
 int now=V[i][j];
 ans[V[i][j]]=V[i][(j+x)%size[i]];
 }
 }
 }
 for(int i=1;i<n;i++)printf("%d ",ans[i]);
 printf("%d\n",ans[n]);
 return 0;
}

I.Interval

题意

对一个区间$[l,r]$可进行两种操作：

1、将$[l,r]$变为$[l-1,r]$或$[l+1,r]$

2、将$[l,r]$变为$[l,r-1]$或$[l,r+1]$

现在有m个限制，限制区间$[l_i,r_i]$不能进行操作c($c=L$或$c=R$)，但是开启这个限制需
要w_i的费用

问最少的费用花费，使得区间$[1,n]$不能转移到任意一个区间$[l,r]$使$l=r$

题解

补题 solved by hxm

将每个区间看做二维平面上的点，我们的目标就是阻止从$(1,n)$走到任意一个(x,x)

显然相邻的点可以连边，我们把$(1,n)$看做源点的话，新建一个汇点将所有(x,x)连向汇点，那么这就
是一个最小割问题

2026/01/14 10:06 11/13 2020牛客暑期多校训练营（第二场）

CVBB ACM Team - https://wiki.cvbbacm.com/

但是会T。

发现这是一个平面图，转化为对偶图的最短路即可

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#include<set>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 250005,maxm = 100005;
const LL INF = 1000000000000000000ll;
inline int read(){
 int out = 0,flag = 1; char c = getchar();
 while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
 while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c =
getchar();}
 return flag ? out : -out;
}
int h[maxn],ne;
struct EDGE{
 int to,w,nxt;
}ed[maxn * 2];
void build(int u,int v,int w){
 ed[++ne] = (EDGE){v,w,h[u]}; h[u] = ne;
 ed[++ne] = (EDGE){u,w,h[v]}; h[v] = ne;
 //printf("build %d to %d costs %d\n",u,v,w);
}
int C[505][505],R[505][505];
int n,m,S,T;
int id(int x,int y){
 return x * (x - 1) / 2 + y;
}
LL d[maxn],vis[maxn];
struct node{int u; LL d;};
inline bool operator <(const node& a,const node& b){return a.d > b.d;}
priority_queue<node> q;
void dijkstra(){
 for (int i = 1; i <= T; i++) d[i] = INF,vis[i] = false;

Last
update:
2020/07/17
17:51

2020-2021:teams:die_java:front_page_summertrain2 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:die_java:front_page_summertrain2&rev=1594979502

https://wiki.cvbbacm.com/ Printed on 2026/01/14 10:06

 d[S] = 0;
 node u;
 q.push((node){S,d[S]});
 while (!q.empty()){
 u = q.top(); q.pop();
 if (vis[u.u]) continue;
 vis[u.u] = true;
 Redge(u.u) if (!vis[to = ed[k].to] && d[to] > d[u.u] + ed[k].w){
 d[to] = d[u.u] + ed[k].w;
 q.push((node){to,d[to]});
 }
 }
}
int main(){
 n = read(); m = read();
 int l,r,w; char c;
 for (int i = 1; i <= m; i++){
 l = read(); r = read(); scanf("%c",&c); w = read();
 if (c == 'L') R[l][r] = w;
 else C[l][r] = w;
 }
 for (int i = 1; i <= n - 1; i++)
 for (int j = 1; j <= i; j++){
 //puts("LXT");
 //printf("[%d,%d] [%d,%d]\n",i + 1,j + 1,i + 1,j);
 //cout << C[i + 1][j + 1] << ' ' << R[i + 1][j] << endl;
 if (j < i && C[j + 1][i + 1]) build(id(i,j),id(i,j + 1),C[j +
1][i + 1]);
 if (i < n - 1 && R[j][i + 1]) build(id(i,j),id(i + 1,j),R[j][i
+ 1]);
 }
 S = 0; T = n * (n - 1) / 2 + 1;
 for (int i = 1; i <= n - 1; i++) if (C[1][i + 1])
build(S,id(i,1),C[1][i + 1]);
 for (int i = 1; i <= n - 1; i++) if (R[i][n]) build(id(n -
1,i),T,R[i][n]);
 dijkstra();
 if (d[T] != INF) printf("%lld\n",d[T]);
 else puts("-1");
 return 0;
}

训练实况

开场 发现D很简单
12:08 hxm 过D wxg想出B题做法 fyh开写B
12:08~12:50 fyh狂waB wxg hxm想出C hxm开写C
13:33 hxm过C 在想B的错误和F，尝试用分数处理精度问题 改为wxg写B

2026/01/14 10:06 13/13 2020牛客暑期多校训练营（第二场）

CVBB ACM Team - https://wiki.cvbbacm.com/

13:33~14:30 B卡常 又wa又T hxm想出F 开写
15：04 hxm过F wxg继续尝试B，放弃 ，wxg开想G
15:04~16:00 ？？
16:00 看J题过得人多 fyh想J
16:36 fyh 过J wxg写G,未知原因段错误，结束。

训练总结

因为很少人过，没有读I
K题因为过的人少没有深想
H没有仔细想
B陷入无解，纠结太久
总结：计算几何最后再写 对榜的利用价值??

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:die_java:front_page_summertrain2&rev=1594979502

Last update: 2020/07/17 17:51

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:die_java:front_page_summertrain2&rev=1594979502

	2020牛客暑期多校训练营（第二场）
	训练结果
	题解
	题目名字
	题意
	题解

	C.Cover the Tree
	题意
	题解

	D.Duration
	F.Fake Maxpooling
	题意
	题解

	H.Happy Triangle
	题意
	题解

	题目名字
	题意
	题解

	J.Just Shuffle
	题意
	题解

	I.Interval
	题意
	题解

	训练实况
	训练总结

