
2026/02/02 11:29 1/9 概述

CVBB ACM Team - https://wiki.cvbbacm.com/

概述

树套树，就是在一个树型数据结构上，每个点不再是一个节点，而是另外一个树形数据结构。

经常应用在一些普通的数据结构外套上区间操作或者动态操作时候。没有固定的套路，根据题目来选不同
的树型数据结构组合。

下面介绍一些常用的树套树

树状数组套线段树

例题 [CQOI2011]动态逆序对

现在给出 $1∼n $ 的一个排列，按照某种顺序依次删除 m 个元素，你的任务是在每次删除一个元素之
前统计整个序列的逆序对数。

� 我们可以建立树状数组，第 i 位维护 $a[i-lowbit(i)+1] ∼ a[i]$ 的权值线段树。插入和普通的求逆序
对方法相同，删除 x 的时候查询位置在后面比 x 大的数有多少即可。

为了防止内存爆找，线段树采用动态开点。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cctype>
#include<cstring>
#define ll long long
using namespace std;

inline int read()
{
 int k=0,f=1;char c=getchar();
 while(!isdigit(c)) {if(c=='-') f=-1;c=getchar();}
 while(isdigit(c)) k=k*10+c-'0',c=getchar();return f*k;
}

const int N=100055;
int root[N],lch[N*91],rch[N*91],sum[N*91],cnt;
int n,m,pos[N];
ll anss;

void add(int &k,int l,int r,int x)
{
 if(!k) k=++cnt;sum[k]++;
 if(l==r) return ;
 int mid=l+r>>1;
 if(x<=mid) add(lch[k],l,mid,x);
 else add(rch[k],mid+1,r,x);

Last
update:
2020/05/21
10:08

2020-2021:teams:die_java:front_page_treeintree https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:die_java:front_page_treeintree&rev=1590026900

https://wiki.cvbbacm.com/ Printed on 2026/02/02 11:29

}

void del(int k,int l,int r,int x)
{
 if(!k) return ;
 sum[k]--;
 if(l==r) return ;
 int mid=l+r>>1;
 if(x<=mid) del(lch[k],l,mid,x);
 else del(rch[k],mid+1,r,x);
}

int query(int k,int l,int r,int a,int b)
{
 if(!k) return 0;
 if(a<=l&&b>=r) return sum[k];
 int mid=l+r>>1,ans=0;
 if(a<=mid) ans+=query(lch[k],l,mid,a,b);
 if(b>mid) ans+=query(rch[k],mid+1,r,a,b);
 return ans;
}

int main()
{
 n=read();m=read();
 for(int i=1;i<=n;i++)
 {
 int a=read();pos[a]=i;
 for(int j=i;j<=n;j+=j&-j)
 add(root[j],1,n,a);
 for(int j=i;j;j-=j&-j)
 anss+=query(root[j],1,n,a+1,n);
 }
 for(int i=1;i<=m;i++)
 {
 printf("%lld\n",anss);
 int a=read();
 if(a!=n)
 {
 for(int j=pos[a];j;j-=j&-j) anss-=query(root[j],1,n,a+1,n);
 }
 if(a!=1)
 {
 for(int j=n;j;j-=j&-j) anss-=query(root[j],1,n,1,a-1);
 for(int j=pos[a]-1;j;j-=j&-j) anss+=query(root[j],1,n,1,a-1);
 }
 for(int j=pos[a];j<=n;j+=j&-j) del(root[j],1,n,a);
 }
 return 0;

2026/02/02 11:29 3/9 概述

CVBB ACM Team - https://wiki.cvbbacm.com/

}

线段树套平衡树

例题 洛谷P3380 二逼平衡树

让你维护一个有序数列，有以下操作：

1.查询k在区间内的排名

2.查询区间内排名为k的值

3.修改某一位值上的数值

4.查询k在区间内的前驱

5.查询k在区间内的后继

就是平衡时问题加上了区间限制。我们外层建线段树，每一个节点维护该节点包含区间的平衡树。

操作一和操作三对线段树上包含区间的节点全部进行操作。

操作四，五，外层线段树区间查询，对每个包含[l,r]的节点得到的前驱/后继求一个最大值/最小值即可。

操作二 我们二分答案，和操作一类似，利用小于某数的个数进行二分。复杂度多一个 log 。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cctype>
using namespace std;

inline int read()
{
 int k=0,f=1;char c=getchar();
 while(!isdigit(c)) {if(c=='-') f=-1;c=getchar();}
 while(isdigit(c)) k=k*10+c-'0',c=getchar();return f*k;
}
const int N=100005,inf=2147483647;
struct T
{
 int ch[2],fa,size,cnt,v;
}tr[N*200];
int tot,rt[N*20],n,m,a[N];

#define l(x) tr[x].ch[0]
#define r(x) tr[x].ch[1]
void pu(int x)
{

Last
update:
2020/05/21
10:08

2020-2021:teams:die_java:front_page_treeintree https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:die_java:front_page_treeintree&rev=1590026900

https://wiki.cvbbacm.com/ Printed on 2026/02/02 11:29

 tr[x].size=tr[l(x)].size+tr[r(x)].size+tr[x].cnt;
}

void rotate(int x)
{
 int y=tr[x].fa,z=tr[y].fa,k=tr[y].ch[1]==x;
 tr[z].ch[tr[z].ch[1]==y]=x;tr[x].fa=z;
 tr[y].ch[k]=tr[x].ch[k^1];tr[tr[x].ch[k^1]].fa=y;
 tr[y].fa=x;tr[x].ch[k^1]=y;
 pu(y);pu(x);
}

void splay(int x,int r,int pos)
{
 while(tr[x].fa!=pos)
 {
 int y=tr[x].fa,z=tr[y].fa;
 if(z!=pos) (l(z)==y)^(l(y)==x)?rotate(x):rotate(y);
 rotate(x);
 }
 if(!pos) rt[r]=x;
}

void ins(int x,int r)
{
 int u=rt[r],f=0;
 if(!u)
 {
 tr[++tot].v=x;tr[tot].size=tr[tot].cnt=1;rt[r]=tot;return ;
 }
 while(u&&tr[u].v!=x) f=u,u=tr[u].ch[tr[u].v<x];
 if(u) {tr[u].cnt++;tr[u].size++;splay(u,r,0);return;}
 u=++tot;
 tr[u].fa=f;if(f) tr[f].ch[tr[f].v<x]=u;
 tr[u].v=x;tr[u].size=tr[u].cnt=1;splay(u,r,0);
}

void find(int x,int r)
{
 int u=rt[r];
 while(tr[u].v!=x&&tr[u].ch[tr[u].v<x])
 u=tr[u].ch[tr[u].v<x];
 splay(u,r,0);
}

int find_max(int x)
{
 while(r(x)) x=r(x);return x;
}

2026/02/02 11:29 5/9 概述

CVBB ACM Team - https://wiki.cvbbacm.com/

int lxt(int x,int r)
{
 int u=rt[r],ans=-inf;
 while(u)
 {
 if(tr[u].v<x) ans=max(ans,tr[u].v),u=r(u);
 else u=l(u);
 }
 return ans;
}

int rxt(int x,int r)
{
 int u=rt[r],ans=inf;
 while(u)
 {
 if(x<tr[u].v) ans=min(ans,tr[u].v),u=l(u);
 else u=r(u);
 }
 return ans;
}

void replace(int x,int y,int r)
{
 find(x,r);
 int u=rt[r];
 if(tr[u].cnt>1) tr[u].size--,tr[u].cnt--;
 else if(!tr[u].ch[0]) rt[r]=r(u),tr[r(u)].fa=0;
 else if(!tr[u].ch[1]) rt[r]=l(u),tr[l(u)].fa=0;
 else
 {
 splay(find_max(l(u)),rt[r],u);
 tr[tr[u].ch[0]].ch[1]=tr[u].ch[1];
 tr[r(u)].fa=l(u);tr[l(u)].fa=0;
 rt[r]=l(u);pu(l(u));
 }
 ins(y,r);
}

int ran(int x,int r)
{
 int u=rt[r],ans=0;
 while(u)
 {
 if(tr[u].v>x) u=l(u);
 else if(tr[u].v<x) ans+=tr[l(u)].size+tr[u].cnt,u=r(u);
 else {ans+=tr[l(u)].size;return ans;}
 }
 return ans;
}
#define lson k<<1,l,mid

Last
update:
2020/05/21
10:08

2020-2021:teams:die_java:front_page_treeintree https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:die_java:front_page_treeintree&rev=1590026900

https://wiki.cvbbacm.com/ Printed on 2026/02/02 11:29

#define rson k<<1|1,mid+1,r
void build(int k,int l,int r)
{
 for(int i=l;i<=r;i++) ins(a[i],k);
 if(l==r) return ;
 int mid=l+r>>1;
 build(lson);build(rson);
}

int sol1(int k,int l,int r,int a,int b,int x)
{
 if(a<=l&&b>=r)
 {
 return ran(x,k);
 }
 int mid=l+r>>1,ans=0;
 if(a<=mid) ans+=sol1(lson,a,b,x);
 if(b>mid) ans+=sol1(rson,a,b,x);
 return ans;
}

int sol2(int l,int r,int k)
{
 int L=0,R=1e8;
 while(R>L)
 {
 int mid=L+R>>1;
 if(sol1(1,1,n,l,r,mid)<k) L=mid+1;
 else R=mid;
 }
 return L-1;
}

void sol3(int k,int l,int r,int c,int x)
{
 replace(a[c],x,k);
 if(l==r) {a[c]=x;return;}
 int mid=l+r>>1;
 if(c<=mid) sol3(lson,c,x);
 else sol3(rson,c,x);
}

int sol4(int k,int l,int r,int a,int b,int x)
{
 if(a<=l&&b>=r) return lxt(x,k);
 int mid=l+r>>1,ans=-inf;
 if(a<=mid) ans=max(ans,sol4(lson,a,b,x));
 if(b>mid) ans=max(ans,sol4(rson,a,b,x));
 return ans;
}

2026/02/02 11:29 7/9 概述

CVBB ACM Team - https://wiki.cvbbacm.com/

int sol5(int k,int l,int r,int a,int b,int x)
{
 if(a<=l&&b>=r)
 {
 return rxt(x,k);
 }
 int mid=l+r>>1,ans=inf;
 if(a<=mid) ans=min(ans,sol5(lson,a,b,x));
 if(b>mid) ans=min(ans,sol5(rson,a,b,x));
 return ans;
}

int main()
{
 int opt,b,c,d;
 n=read();m=read();
 for(int i=1;i<=n;i++) a[i]=read();
 build(1,1,n);
 for(int i=1;i<=m;i++)
 {
 opt=read();b=read();c=read();if(opt!=3) d=read();
 if(opt==1) printf("%d\n",sol1(1,1,n,b,c,d)+1);
 else if(opt==2) printf("%d\n",sol2(b,c,d));
 else if(opt==3) sol3(1,1,n,b,c);
 else if(opt==4) printf("%d\n",sol4(1,1,n,b,c,d));
 else printf("%d\n",sol5(1,1,n,b,c,d));
 }
 return 0;
}

线段树套线段树

例题 P3332 [ZJOI2013]K大数查询

题目大意

有N个位置，M个操作，操作有2种。

操作1：1 a b c 在第a个位置到第b个位置，每个位置加入一个数c
操作2：2 a b c 询问从第a个位置到第b个位置中第c大的数。 $n,m\leq5*10^4,|c|\leq n$

题解

权值线段树套位置线段树。其中第一维记录权值，第二维记录位置。对于第一维线段树上的一个节点维护
的权值区间$[L, R]$，它所指向的那颗线段树中记录的是每个位置包含了几个值在$[L, R]$范围内的数。

Last
update:
2020/05/21
10:08

2020-2021:teams:die_java:front_page_treeintree https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:die_java:front_page_treeintree&rev=1590026900

https://wiki.cvbbacm.com/ Printed on 2026/02/02 11:29

之所以这题不能像上文一样用线段树套平衡树（外层记录位置，内层维护权值）的原因是：对于套在外面
那一层的线段树是很难进行区间操作的，所以这题就需要换一个思路，把位置信息放在内层的线段树中。

PS:以下代码用到了一个小技巧，就是线段树标记永久化，相比与正常线段树的pushdown,我们在路过该节
点的时候把修改对答案的影响加上，这样能优化不少常数，否则这题你很难卡过去

#include<bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
typedef long long LL;
typedef pair<int,int> PII;
#define X first
#define Y second
inline int read()
{
 int x=0,f=1;char c=getchar();
 while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
 while(isdigit(c)){x=x*10+c-'0';c=getchar();}
 return x*f;
}
const int maxn=50010,maxnode=20000005;
int T,tp,n,tot,lc[maxnode],rc[maxnode],ql,qr,v,rt[maxn<<3];;
LL addv[maxnode],sumv[maxnode];
void add(int& o,int L,int R)
{
 if(!o)o=++tot;
 if(ql<=L && R<=qr){sumv[o]+=(R-L+1);addv[o]++;return;}
 int mid=L+R>>1;
 if(ql<=mid)add(lc[o],L,mid);
 if(qr>mid)add(rc[o],mid+1,R);
 sumv[o]=sumv[lc[o]]+sumv[rc[o]]+addv[o]*(R-L+1);
 return;
}
LL query(int o,int L,int R,LL Add)
{
 if(!o)
 {
 int l=max(L,ql),r= min(R,qr);
 return Add*(r-l+1);
 }
 if(ql<=L && R<=qr) return sumv[o]+Add*(R-L+1);
 int mid=L+R>>1;
 LL ans=0;
 if(ql<=mid)ans+=query(lc[o],L,mid,Add+addv[o]);
 if(qr>mid)ans+=query(rc[o],mid+1,R,Add+addv[o]);
 return ans;
}
void update()
{

2026/02/02 11:29 9/9 概述

CVBB ACM Team - https://wiki.cvbbacm.com/

 int o=1,L=1,R=n<<1|1;
 while(L<R)
 {
 add(rt[o],1,n);
 int mid=L+R>>1,lo=o<<1,ro=lo|1;
 if(v<=mid)R=mid,o=lo;
 else L=mid+1,o=ro;
 }
 return add(rt[o],1,n);
}
int query()
{
 int o=1,L=1,R=n<<1|1;
 while(L<R)
 {
 int mid=L+R>>1,lo=o<<1,ro=lo|1;
 LL res=query(rt[ro],1,n,0);
 if(v<=res)L=mid+1,o=ro;
 else R=mid,o=lo,v-=res;
 }
 return L;
}
int main()
{
 n=read();T=read();
 while(T--)
 {
 tp=read();ql=read();qr=read();v=read();
 if(tp==1)v+=n+1,update();
 else if(tp==2)printf("%d\n",query()-n-1);
 }
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:die_java:front_page_treeintree&rev=1590026900

Last update: 2020/05/21 10:08

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:die_java:front_page_treeintree&rev=1590026900

	概述
	树状数组套线段树
	例题 [CQOI2011]动态逆序对

	线段树套平衡树
	例题 洛谷P3380 二逼平衡树

	线段树套线段树
	例题 P3332 [ZJOI2013]K大数查询
	题目大意
	题解

