Warning: session_start(): open(/tmp/sess_a6a160c938537fd92b57038d6e547fe3, O_RDWR) failed: No space left on device (28) in /data/wiki/inc/init.php on line 239

Warning: session_start(): Failed to read session data: files (path: ) in /data/wiki/inc/init.php on line 239

Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/auth.php on line 430

Warning: mkdir(): No space left on device in /data/wiki/lib/plugins/dw2pdf/vendor/mpdf/mpdf/src/Cache.php on line 19
Temporary files directory "/data/wiki/data/tmp/dwpdf/375/" is not writable
Writing /data/wiki/data/cache/d/de2edb2fcb553ea79b79c722a4e13dbc.captchaip failed

Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/inc/actions.php on line 38

Warning: Cannot modify header information - headers already sent by (output started at /data/wiki/inc/init.php:239) in /data/wiki/lib/tpl/dokuwiki/main.php on line 12
2020-2021:teams:farmer_john:裴蜀定理证明 [CVBB ACM Team]

用户工具

站点工具


2020-2021:teams:farmer_john:裴蜀定理证明

裴蜀定理:若ax+by = z,则 gcd(a,b)| z 再顺手证明一下裴蜀定理: 设k = gcd(a,b),则 k | a, k | b,根据整除的性质,有 k | (ax+by) 设 s为ax+by的最小正数值 再设 q = [a / s](a整除s的值);r = a mod s = a-q(ax+by) = a(1 - qx)+b(-qy); 由此可见r也为a,b的线性组合;(ax+by称为a,b的线性组合) 又因为s为a,b的线性组合的最小正数值,0⇐ r < s,所以r的值为0,即 a mod s = r =0;s | a; 同理可得 s | b,则 s | k; 又因为 k | (ax+by),s为ax+by的最小正数值,所以 k | s; 因为 s | k,k | s,所以s = k; 原命题得证。

原链接

2020-2021/teams/farmer_john/裴蜀定理证明.1599291748.txt.gz · 最后更改: 2020/09/05 15:42 由 jjleo