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格式：

向量建议写成 $\boldsymbol{x}_{0}$1.

内容：

没有例题吗1.

知识点

前言

对于一元函数的极值问题相信大家都十分熟悉，但是对于多元函数的极值问题可能就会比较陌生。大家都
学过淑芬怎么可能陌生呢

对于没有限制条件的多元函数来说，只需要对函数求导即可，但是若有了限制条件，即函数的值要在一定
条件下才能取到，则需要用到拉格朗日乘子法。

引理

设函数 $f(\boldsymbol{x})$
，${\boldsymbol{\varphi}}(\boldsymbol{x})=({\varphi}_1(\boldsymbol{x}),{\varphi}_2(\boldsymbol{
x}),\cdots,{\varphi}_m(\boldsymbol{x}))$ 在区域 $D\subset \mathbb{R}^n (m<n)$ 内具有各个连续
偏导数，再设 ${\boldsymbol{x_0}}=({x_1}^0,{x_2}^0,\cdots,{x_n}^0)\in D$
为$f(\boldsymbol{x})$ 在约束条件 $$\begin{cases}{\varphi}_1(\boldsymbol{x})=0
\\{\varphi}_2(\boldsymbol{x})=0 \\ \vdots\\{\varphi}_m(\boldsymbol{x})=0\end{cases}$$下的极值点，
并且 ${\varphi}'(x_0)$ 的秩为 $m$ ，则存在常数
${\lambda}_1,{\lambda}_2,\cdots,{\lambda}_3{\in}\mathbb{R}$ ，使得在 $\boldsymbol{x_0}$ 处成
立下述等式：$$\begin{cases}{\frac{\partial{f(\boldsymbol{x_0})}}{\partial{x_i}}}+\sum_{j=1}^m
{\lambda}_j \frac{\partial{\varphi}_j(\boldsymbol{x_0})}{\partial{x_i}}=0\quad (i=1,2,\cdots,n) \\ \\
{\varphi}_j(\boldsymbol{x_0})=0\qquad\qquad\qquad\qquad (j=1,2,\cdots,m)\end{cases}$$

证明

由于 ${\varphi'(\mathbf{x_0})}$ 的秩为 $m$ ，我们不妨设行列
式$$\frac{\partial(\varphi_1,\varphi_2,\cdots,\varphi_m)}{\partial(x_{n-m+1},x_{n-
m+2},\cdots,x_n)}$$在 $x_0$ 处不为零。 因此，在 $\mathbf{x_0}$ 的某个邻域内唯一确定一组具有各
个连续偏导数的隐函数$$\begin{cases}x_{n-m+1}=g_1(x_1,x_2,\cdots,x_{n-m}),\\ x_{n-
m+2}=g_2(x_1,x_2,\cdots,x_{n-m}),\\ \vdots\\ x_{n}=g_m(x_1,x_2,\cdots,x_{n-
m}),\\\end{cases}$$满足 ${x_j}^0=g_j({x_1}^0,{x_2}^0,\cdots,{x_n}^0)(j=n-m+1,n-
m+2,\cdots,n)$ 且有$$\varphi_k(x_1,\cdots,x_{n-m},g_1(x_1,x_2,\cdots,x_{n-
m}),\cdots,g_m(x_1,x_2,\cdots,x_{n-m}))=0$$ 将隐函数组代入 $f(\mathbf{x_0})$
得$$f(x_1,\cdots,x_{n-m},g_1(x_1,x_2,\cdots,x_{n-m}),\cdots,g_m(x_1,x_2,\cdots,x_{n-m}))$$ 因此，
$\mathbf{x_0}$ 是条件极值点转化为 $({x_1}^0,{x_2}^0,\cdots,{x_{n-m}}^0)$ 为上述函数的通常极
值点。
令 $\mathbf{x_0}'$ 则对 $i=1,2,\cdots,n-m$
有$$\frac{\partial{f(\mathbf{x_0})}}{\partial{x_i}}+\frac{\partial{f(\mathbf{x_0})}}{\partial{x_{n-
m+1}}}{\cdot}\frac{\partial{g_1(\mathbf{x_0}')}}{\partial{x_i}}+\cdots+\frac{\partial{f(\mathbf{x
_0})}}{\partial{x_n}}{\cdot}\frac{\partial{g_m(\mathbf{x_0}')}}{\partial{x_i}}=0$$ 令
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$\mathbf{g}(\mathbf{x}'=(g_1(\mathbf{x}'),g_2(\mathbf{x}'),\cdots,g_m(\mathbf{x}'))^T$ ，其中
$\mathbf{x}'=(x_1,x_2,\cdots,x_{n-m})$。将上述 $n-m$ 个等式写成向量形式，
有$$\left(\frac{\partial{f(\mathbf{x_0})}}{\partial{x_1}},\cdots,\frac{\partial{f(\mathbf{x_0})}}{\partial{x_{n-
m}}}\right)+\left(\frac{\partial{f(\mathbf{x_0})}}{\partial{x_{n-
m+1}}},\cdots,\frac{\partial{f(\mathbf{x_0})}}{\partial{x_n}}\right)\mathbf{g}(\mathbf{x_0}')=0\
quad \tag{1}$$ 由于$$\mathbf{g}(\mathbf{x_0}')=-\left(\begin{array}
{}\frac{\partial{\varphi_1(\mathbf{x_0})}}{\partial{x_{n-m+1}}} &
\frac{\partial{\varphi_1(\mathbf{x_0})}}{\partial{x_{n-m+2}}} & \cdots &
\frac{\partial{\varphi_1(\mathbf{x_0})}}{\partial{x_n}}\\
\frac{\partial{\varphi_2(\mathbf{x_0})}}{\partial{x_{n-m+1}}} &
\frac{\partial{\varphi_2(\mathbf{x_0})}}{\partial{x_{n-m+2}}} & \cdots &
\frac{\partial{\varphi_2(\mathbf{x_0})}}{\partial{x_n}}\\ \vdots & \vdots & \ddots & \vdots \\
\frac{\partial{\varphi_m(\mathbf{x_0})}}{\partial{x_{n-m+1}}} &
\frac{\partial{\varphi_m(\mathbf{x_0})}}{\partial{x_{n-m+2}}} & \cdots &
\frac{\partial{\varphi_m(\mathbf{x_0})}}{\partial{x_n}}\end{array}\right)^{-1} \left(\begin{array}
{}\frac{\partial{\varphi_1(\mathbf{x_0})}}{\partial{x_1}} &
\frac{\partial{\varphi_1(\mathbf{x_0})}}{\partial{x_2}} & \cdots &
\frac{\partial{\varphi_1(\mathbf{x_0})}}{\partial{x_{n-m}}}\\
\frac{\partial{\varphi_2(\mathbf{x_0})}}{\partial{x_1}} &
\frac{\partial{\varphi_2(\mathbf{x_0})}}{\partial{x_2}} & \cdots &
\frac{\partial{\varphi_2(\mathbf{x_0})}}{\partial{x_{n-m}}}\\ \vdots & \vdots & \ddots & \vdots \\
\frac{\partial{\varphi_m(\mathbf{x_0})}}{\partial{x_1}} &
\frac{\partial{\varphi_m(\mathbf{x_0})}}{\partial{x_2}} & \cdots &
\frac{\partial{\varphi_m(\mathbf{x_0})}}{\partial{x_{n-m}}}\end{array}\right)\triangleq -
A^{-1}B\quad \tag{2}$$ 注意到$$-\left(\frac{\partial{f(\mathbf{x_0})}}{\partial{x_{n-
m+1}}},\cdots,\frac{\partial{f(\mathbf{x_0})}}{\partial{x_n}}\right)\cdot A^{-1}$$ 是一个 $m$ 维
行向量，我们可以将其记为$$-\left(\frac{\partial{f(\mathbf{x_0})}}{\partial{x_{n-
m+1}}},\cdots,\frac{\partial{f(\mathbf{x_0})}}{\partial{x_n}}\right)\cdot
A^{-1}=\left(\lambda_1,\lambda_2,\cdots,\lambda_m\right)\quad \tag{3}$$ 将
$\left(2\right),\left(3\right)$代入之前的式子 $\left(1\right)$ 得
$$\left(\frac{\partial{f(\mathbf{x_0})}}{\partial{x_1}},\cdots,\frac{\partial{f(\mathbf{x_0})}}{\parti
al{x_{n-m}}}\right)+\left(\lambda_1,\lambda_2,\cdots,\lambda_m\right)\left(\begin{array}
{}\frac{\partial{\varphi_1(\mathbf{x_0})}}{\partial{x_1}} &
\frac{\partial{\varphi_1(\mathbf{x_0})}}{\partial{x_2}} & \cdots &
\frac{\partial{\varphi_1(\mathbf{x_0})}}{\partial{x_{n-m}}}\\
\frac{\partial{\varphi_2(\mathbf{x_0})}}{\partial{x_1}} &
\frac{\partial{\varphi_2(\mathbf{x_0})}}{\partial{x_2}} & \cdots &
\frac{\partial{\varphi_2(\mathbf{x_0})}}{\partial{x_{n-m}}}\\ \vdots & \vdots & \ddots & \vdots \\
\frac{\partial{\varphi_m(\mathbf{x_0})}}{\partial{x_1}} &
\frac{\partial{\varphi_m(\mathbf{x_0})}}{\partial{x_2}} & \cdots &
\frac{\partial{\varphi_m(\mathbf{x_0})}}{\partial{x_{n-m}}}\end{array}\right)=0\quad \tag{4}$$
另外我们可以将 $\left(3\right)$ 改写成 $$ \left(\frac{\partial{f(\mathbf{x_0})}}{\partial{x_{n-
m+1}}},\cdots,\frac{\partial{f(\mathbf{x_0})}}{\partial{x_n}}\right)+\left(\lambda_1,\lambda_2,\cd
ots,\lambda_m\right)\left(\begin{array} {}\frac{\partial{\varphi_1(\mathbf{x_0})}}{\partial{x_{n-
m+1}}} & \frac{\partial{\varphi_1(\mathbf{x_0})}}{\partial{x_{n-m+2}}} & \cdots &
\frac{\partial{\varphi_1(\mathbf{x_0})}}{\partial{x_n}}\\
\frac{\partial{\varphi_2(\mathbf{x_0})}}{\partial{x_{n-m+1}}} &
\frac{\partial{\varphi_2(\mathbf{x_0})}}{\partial{x_{n-m+2}}} & \cdots &
\frac{\partial{\varphi_2(\mathbf{x_0})}}{\partial{x_n}}\\ \vdots & \vdots & \ddots & \vdots \\
\frac{\partial{\varphi_m(\mathbf{x_0})}}{\partial{x_{n-m+1}}} &
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\frac{\partial{\varphi_m(\mathbf{x_0})}}{\partial{x_{n-m+2}}} & \cdots &
\frac{\partial{\varphi_m(\mathbf{x_0})}}{\partial{x_n}}\end{array}\right)=0\quad \tag{5}$$ 将
$\left(4\right),\left(5\right)$ 写成分量形式再加上约束条件即可证明。

拉格朗日乘子法

构造函数 $F(x_1,\cdots,x_n,\lambda_1,\cdots,\lambda_m)=f(\mathbf{x})+\sum_{j=1}^m
\lambda_j\varphi_j(\mathbf{x})$ ，则上述求条件极值点的必要条件形式转化为 $F$ 的通常极值的必要条
件 $$\begin{cases}\frac{\partial{F(\mathbf{x_0})}}{\partial{x_i}}=0\quad(i=1,2,\cdots,n)\\
\frac{\partial{F(\mathbf{x_0})}}{\partial{\lambda_j}}=0\quad(j=1,2,\cdots,m)\end{cases}$$ 此即拉
格朗日乘子法
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