
2026/01/14 01:35 1/4 李超树

CVBB ACM Team - https://wiki.cvbbacm.com/

李超树

它能干什么

维护区间的多条直线
单点查询最值
区间查询最值

它是什么

根据用途不难看出，李超树是一种可以维护区间“优势线段”的线段树。至于优势线段，通俗地讲，从上
向下看能看到覆盖长度最长的线段。至于详细的定义，没有找到具体的说明，凭个人理解，可以认为是在
某个区间内，如果某条线段在某些横坐标区间上的值都大于其他线段，并且这些区间总长度占当前总区间
的比例最高，则该线段为“优势线段”。如图：

其中a即为当前区间的“优势线段”。

相关操作

李超树作为线段树的变种，修改、查询和普通线段树大同小异。

杂项

在说具体操作前，先把需要的函数和结构体说一说，我们需要的结构体有两种，一个记录直线，另一个记
录区间。而对于区间来说，我们又需要对区间编号，从而便于查询修改时查找优势线段。 直接上代码了：

struct line{
 long long k,b;

https://wiki.cvbbacm.com/lib/exe/detail.php?id=2020-2021%3Ateams%3Afarmer_john%3Alichao_tree&media=2020-2021:teams:farmer_john:qq%E5%9B%BE%E7%89%8720200514003942.png

Last
update:
2020/05/23
00:10

2020-2021:teams:farmer_john:lichao_tree https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:farmer_john:lichao_tree&rev=1590163804

https://wiki.cvbbacm.com/ Printed on 2026/01/14 01:35

 int l,r;
};
struct node{
 line t;
 int flag;
}a[MAX_N<<1];
line ca;
int get_id(int l,int r){
 return (l+r)|(l!=r);
}
long long f(line t,long long pos){
 return t.k*pos+t.b;
}

修改

先判断当前区间是否存在优势线段，如果没有的话直接插入就可。

假设当前已经有了优势线段a，对于待插入直线k，首先判断左右两端的纵坐标，如果都大/小于a，就
可以直接判断；如果两端大小关系不一致，就判断中点位置的纵坐标。

假设虚线即为当前区间的中点，如果该处k的函数值较大，显然优势线段即为k，对于线段a，显然在
中点左侧a仍有可能成为优势线段，而右侧则根本不可能，那只需要将a和k $swap$，然后处理左侧
部分即可。如果中点处k的函数值较小，跳过$swap$直接向下即可。

代码：

void change(int l,int r,line k){
 int now=get_id(l,r);
 if(k.l<=l&&r<=k.r){
 if(!a[now].flag){//直接替换
 a[now].flag=1;
 a[now].t=k;
 }

https://wiki.cvbbacm.com/lib/exe/detail.php?id=2020-2021%3Ateams%3Afarmer_john%3Alichao_tree&media=2020-2021:teams:farmer_john:qq%E5%9B%BE%E7%89%8720200514005839.png

2026/01/14 01:35 3/4 李超树

CVBB ACM Team - https://wiki.cvbbacm.com/

 else if(f(k,l)>=f(a[now].t,l)&&f(k,r)>=f(a[now].t,r))//是否其中一条完全
覆盖另一条
 a[now].t=k;
 else if(f(k,l)>f(a[now].t,l)||f(k,r)>f(a[now].t,r)){
 int mid=(l+r)>>1;
 if(f(k,mid)>f(a[now].t,mid))//判断中点处大小
 swap(a[now].t,k);
 if(f(k,l)>f(a[now].t,l))
 change(l,mid,k);
 else
 change(mid+1,r,k);
 }
 }
 else{
 int mid=(l+r)>>1;
 if(k.l<=mid)
 change(l,mid,k);
 if(mid<k.r)
 change(mid+1,r,k);
 }
}

查询

单点

这里先谈谈最大值吧，直接搬普通线段树即可。

代码：

long long query(int l,int r,int pos){
 int now=get_id(l,r);
 if(l==r)
 return f(a[now].t,pos);
 int mid=(l+r)>>1;
 long long ans=f(a[now].t,pos);
 if(pos<=mid)
 return max(ans,query(l,mid,pos));
 else
 return max(ans,query(mid+1,r,pos));
}

区间

区间查询同样类似于普通线段树，仍以最大值为例，当前区间now的最大值$val(now)$即为$\max(当前
区间优势线段两端取值,\max(val(ls),val(rs)))$

Last
update:
2020/05/23
00:10

2020-2021:teams:farmer_john:lichao_tree https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:farmer_john:lichao_tree&rev=1590163804

https://wiki.cvbbacm.com/ Printed on 2026/01/14 01:35

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:farmer_john:lichao_tree&rev=1590163804

Last update: 2020/05/23 00:10

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:farmer_john:lichao_tree&rev=1590163804

	李超树
	它能干什么
	它是什么
	相关操作
	杂项
	修改
	查询
	单点
	区间

