
2026/01/14 04:08 1/2 后缀数组

CVBB ACM Team - https://wiki.cvbbacm.com/

后缀数组

基本定义与概念

后缀：$suf(i)$ 代表字符串 $s$ 从 $i$ 位置开始的后缀（由 $s[i] ~ s[n-1]$ 组成的字符串）

$sa[i]$ ：是一个一维数组，保存了对字符串 $s$ 所有后缀排序后的结果。$sa[i]$ 代表第 $i$ 小的串在原串
中的位置。

$rnk[i]$ ：是一个一维数组，按起始位置保留了每个后缀的排名。$rnk[i]$则为$suf(i)$在所有后缀中的排名。
$(ps: rnk[sa[i]] = i)$

高度数组：$hgt[i]$ 是一个数组，保存了相邻两个后缀的最长公共前缀 $(LCP)$ 的长度。

构造和优化

朴素的构造这样一个数组，最显然的方式显然是直接快速排序。时间复杂度 $O(n^2logn)$，显然很难满足
我们大部分使用的需要。

因此，我们采取倍增的思想来对这些后缀排序。

假设我们对 $hehehda$ 这样的一个字符串的后缀进行排序。

从每个位置开始，长度为$2^0$的字串的排序为：

为了求出长为 $2^1$ 的字符串的排名，我们以每个位置 $i$ 开始,长度为 $2^0$ 的排名为第一关键
字，$i+2^0$ 位置的排名为第二关键字来进行排序，$i+2^0 ≥ n$ 的部分我们就值为 $-1$

重复以上过程，我们可以求出长度为 $2^2$ 的排序结果：

https://wiki.cvbbacm.com/lib/exe/detail.php?id=2020-2021%3Ateams%3Ahotpot%3A%E5%90%8E%E7%BC%80%E6%95%B0%E7%BB%84&media=2020-2021:teams:hotpot:%E5%90%8E%E7%BC%801.png
https://wiki.cvbbacm.com/lib/exe/detail.php?id=2020-2021%3Ateams%3Ahotpot%3A%E5%90%8E%E7%BC%80%E6%95%B0%E7%BB%84&media=2020-2021:teams:hotpot:%E5%90%8E%E7%BC%802.png


Last
update:
2020/09/03
19:21

2020-2021:teams:hotpot:
后缀数组

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:hotpot:%E5%90%8E%E7%BC%80%E6%95%B0%E7%BB%84&rev=1599132083

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:08

不难看出，这个时候，我们已经完成了排序，而最坏的情况下，这种算法也可以在 $logn$ 次完成排序。

用快排进行的话，时间复杂度为 $O(nlognlogn)$

考虑到所有排序数的范围在 $[-1,n)$ 之间，采取基数排序，能够将复杂度优化到 $nlogn$

模板

下面我们给出一道模板题P3809 【模板】后缀排序

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:hotpot:%E5%90%8E%E7%BC%80%E6%95%B0%E7%BB%84&rev=1599132083

Last update: 2020/09/03 19:21

https://wiki.cvbbacm.com/lib/exe/detail.php?id=2020-2021%3Ateams%3Ahotpot%3A%E5%90%8E%E7%BC%80%E6%95%B0%E7%BB%84&media=2020-2021:teams:hotpot:%E5%90%8E%E7%BC%803.png
https://www.luogu.com.cn/problem/P3809
https://www.luogu.com.cn/problem/P3809
https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:hotpot:%E5%90%8E%E7%BC%80%E6%95%B0%E7%BB%84&rev=1599132083

	后缀数组
	基本定义与概念
	构造和优化
	模板


