
2026/01/14 09:04 1/4 AC自动机

CVBB ACM Team - https://wiki.cvbbacm.com/

AC自动机

引入

AC 自动机是一种多模式串匹配算法，一般用于解决对于在文本串中匹配一系列模式串（例：给一个文
本串和一系列模式串，问模式串在文本串中一共出现了多少次）

构造

具体的构造方法我们可以参考 KMP，在每次匹配失败了之后，则需要从 i 回到 $fail(i)$，即 $fail(i)$ 位
置的前缀的是 i 这个位置的前缀的后缀。

而 AC 自动机则是在 $trie$ 上实现这样的操作。

如图所示

设 i 的父亲为 i'，指向i点的边上的字母为c

显然，当 $fail(i')$ 有字母 c的出边时，该出边的指向的点即为 $fail(i)$。（图中 $fail(7)=1,fail(8)=2$）

否则，我们就应当沿着 $fail$ 函数一直向上寻找，直到找到为止，如果找不到一个符合条件的点，则
$fail(i)$ 为根。（图中fail(3)=0）

匹配

有了之前的构造之后我们的匹配较为简单，设当前在i点，每次新加入字符c,都检查i点有没有c的
出边，如果有，则转移到该点，否则沿着$fail$去寻找这样的点（没有就会回到根结点）

如果到了一个单词结点上，则代表该单词被匹配了（可能会有i点不是单词但$fail(i)$是单词的情况）。

如下图 3 到 1 的情况。

https://wiki.cvbbacm.com/lib/exe/detail.php?id=2020-2021%3Ateams%3Ahotpot%3Aac%E8%87%AA%E5%8A%A8%E6%9C%BA&media=2020-2021:teams:hotpot:ac1.png

Last
update:
2020/08/21
17:39

2020-2021:teams:hotpot:ac
自动机

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:hotpot:ac%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1598002767

https://wiki.cvbbacm.com/ Printed on 2026/01/14 09:04

为了解决此类问题，我们又可以引入后缀链接，$nxt(i)$ 表示从i沿着失配边转移，能够到达的第一个单
词结点。

后缀链接可以在失配指针之后求出，如果 $fail(i)$ 为单词结点，则 $nxt(i)=fail(i)$,否则
$nxt(i)=nxt(fail(i))$

优化

由于每次失配时需要用到失配指针，每次加入字符时经过节点数不确定，复杂度可能退化，但对于一个状
态，添加一个字符后，转移到的状态是确定的，这也意味着我们可以预处理每一个状态可能装一道的所有
状态。

对于节点 i ,如果它有字符 c的出边,则加入 c 时，它可以直接转移到该边指向结点，否则应该转移
到fail(i)加入对应字符转移到的点上，我们可以用递推的方式求出这些转移方式，加入这些边，得
到$Trie$图

模板题

P3808 【模板】AC自动机（简单版）

ps:本题由于只记录串出现次数，可以通过标记来优化复杂度。

#include<iostream>
#include<iomanip>
#include<cstdio>
#include<algorithm>
#include<map>
#include<stack>
#include<queue>
#include<complex>
#include<cmath>
#include<cstring>
using namespace std;
const int maxn=1000005;
char s[maxn];
int cnt,ch[maxn][26],Count[maxn],fail[maxn];
int nxt[maxn];
void Insert(){

https://wiki.cvbbacm.com/lib/exe/detail.php?id=2020-2021%3Ateams%3Ahotpot%3Aac%E8%87%AA%E5%8A%A8%E6%9C%BA&media=2020-2021:teams:hotpot:ac2.png
https://www.luogu.com.cn/problem/P3808
https://www.luogu.com.cn/problem/P3808
https://www.luogu.com.cn/problem/P3808
https://www.luogu.com.cn/problem/P3808

2026/01/14 09:04 3/4 AC自动机

CVBB ACM Team - https://wiki.cvbbacm.com/

 scanf("%s",s+1);
 int len=strlen(s+1);
 int rt=0;
 for(int i=1;i<=len;++i){
 int t=s[i]-'a';
 if(!ch[rt][t])ch[rt][t]=++cnt;
 rt=ch[rt][t];
 }
 ++Count[rt];
}
queue<int> Q;
void Build_AC(){
 Q.push(0);
 while(!Q.empty()){
 int x=Q.front();Q.pop();
 for(int i=0;i<26;++i)
 if(ch[x][i]){
 if(x)fail[ch[x][i]]=ch[fail[x]][i];
 Q.push(ch[x][i]);
 if(Count[ch[fail[x]][i]])nxt[ch[x][i]]=ch[fail[x]][i];
 else nxt[ch[x][i]]=nxt[ch[fail[x]][i]];
 }
 else ch[x][i]=ch[fail[x]][i];
 }
}
void Query(){
 scanf("%s",s+1);
 int len=strlen(s+1),rt=0;
 int ans=0;
 for(int i=1;i<=len;++i){
 int t=s[i]-'a';
 int a=ch[rt][t];
 while(a){
 if(Count[a]==-1)break;
 ans+=Count[a];
 Count[a]=-1;
 a=nxt[a];
 }
 rt=ch[rt][t];
 }
 printf("%d",ans);
}
int n;
int main(){
 scanf("%d",&n);
 for(int i=1;i<=n;++i)Insert();
 Build_AC();
 Query();
 return 0;
}

Last
update:
2020/08/21
17:39

2020-2021:teams:hotpot:ac
自动机

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:hotpot:ac%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1598002767

https://wiki.cvbbacm.com/ Printed on 2026/01/14 09:04

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:hotpot:ac%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1598002767

Last update: 2020/08/21 17:39

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:hotpot:ac%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1598002767

	[AC自动机]
	AC自动机
	引入
	构造
	匹配
	优化
	模板题

