2020.08.15-2020.08.21 周报

团队训练

比赛时间	比赛名称
2020.xx.xx	比赛名称

团队会议

个人训练 - nikkukun

专题

比赛

2020.08.14 yukicoder contest **261**

题目	A	В	C	D	Ε	F
通过		V		√	√	
补题						

2020.08.14 Educational Codeforces Round 93 (Rated for Div. 2)

题目	A	В	C	D	Ε	F	G
通过						×	
补题						√	√

2020.08.15 AtCoder Beginner Contest 175

题目	A	В	C	D	Ε	F
通过				√		×
补题						√

- C 题变量 typo[WA(-1)[]
- D 题空间开少了 RE(-1)□然后忘改语言 RE(-2)□虚空调了十几分钟才发现交错语言了;
- F 题赛后 10min 调出来了, 我实在太喜欢赛后过题了。

2020.08.16 Codeforces Global Round 10

题目	A	В	C	D	E	F	G	Н	I
通过	V	√		√	V	√			
补题									

学习总结

个人训练 - qxforever

专题

比赛

比赛名称

题目	A	В	C	D	Ε	F
通过						
补题						

学习总结

个人训练 - Potassium

专题

比赛

比赛名称

题目	A	В	C	D	Ε	F
通过	V					
补题						

学习总结

本周推荐

nikkukun

Yukicoder P1172 - Add Recursive Sequence

- 题意:(方便起见,部分记法与原题不同□\$a_0, a_1, \ldots, a_{\infty}\$\$ 是一个 \$k \leq 200\$ 项常系数齐次线性递推数列,即对 \$p \geq k\$ 都有 \$a_p = \sum _{i=1}^k a_{p-i} c_i\$□且所需参数都已给定。现有一个长度为 \$n \leq 10^5\$ 的序列 \$\{ x_n \}\$□初始值都为 \$0\$,接着进行 \$q\$ 次操作,每次操作会选定一个区间 \$[I, r]\$□依次将该区间内对应的值加上 \$a_0, a_1, \ldots, a_{r-I}\$□求最后序列中每个位置的值模 \$10^9 + 7\$。
- **题解**:首先考虑如何计算某个位置上 $$x_i$$ 的值。不妨假设所有区间端点都距离 \$i\$ 充分远,则 $$x_i$$ 也可以由它之前的 \$k\$ 项以 $$c_1$, c_2 , \$ldots, $c_k$$ 为系数递推得到(比较显然,相同递推的 和式系数不变),因此可以维护一个 $$f_i = x_i$$ 每次用 $$f_{i-k}$, f_{i-k+1} \$ldots, f_{i-1} 推出 $$x_i$$ 30 多次度是 \$O(nk) 的。

https://wiki.cvbbacm.com/ Printed on 2025/11/04 11:48

2025/11/04 11:48 3/3 2020.08.15-2020.08.21 周报

- 接着考虑区间端点距离 \$i\$ 并不充分远,使得 $$x_i$$ 中可能出现并没有递推关系的 $$a_0$, a_1 , \$ldots, $a_{k-1}$$ 的贡献(它们并不能通过递推得到)。我们可以先不将这一部分贡献加入 $$f_ilm 是每次暴力将 \$i\$ 上 $$a_0$, a_1 , \$ldots, $a_{k-1}$$ 的贡献加入 $$x_ilm 然后只在某个区间准备对 $$x_ilm 贡献 $$a_k$$ 这一项时,才给 $$f_{i-k}$$, f_{i-k+1}ldots$, $f_{i-1}$$ 依次加上 $$a_0$$, $a_1$$, \$ldots\$, a_{k-1}lm$ 按之前提到的方法计算递推部分的贡献。这部分的复杂度是 \$O((n+q)k)\$ 的。
- 综上,总时间复杂度 \$O((n + q)k)\$□
- **备注**:需要利用常系数齐次线性递推数列的性质,分开计算与维护 \$<k\$ 部分的贡献与 \$\geq k\$ 部分的贡献,还是比较巧妙的。

qxforever

题目名称

- 题意□
- 题解□
- 备注□

Potassium

题目名称

- 题意□
- 题解□
- 备注□

From:

https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:i_dont_know_png:week_summary_16&rev=1597635731

Last update: 2020/08/17 11:42

