
2026/01/14 02:37 1/3 团队

CVBB ACM Team - https://wiki.cvbbacm.com/

团队

考试，摸了。

个人

zzh

pmxm

jsh

6/6 - AtCoder Beginner Contest 163: pro: 6/6 rk: 14/?
6/7 - Codeforces Round #648 (Div. 2): pro: 6/6/7 rk: ?/?
6/10 - AtCoder Beginner Contest 164: pro: 5/6/6 rk: 18/?
6/11 - Educational Codeforces Round 89 (Rated for Div. 2): pro: 5/5/7 rk: ?/?

本周推荐

zzh

pmxm

jsh

咱们的知识点里也有线段树合并，但是怎么没能证一下复杂度呢？ 那下面我先证明一下线段树合并的复杂
度，然后介绍一个稍微复杂点的应用情况。

线段树合并

线段树合并，即将两个区间一致的节点所对应的线段树，合并为新的线段树，返回出新的节点。

合并操作通常用递归来实现，所以一般非叶子节点的操作是合并两个分支后更新信息。 叶子则根据题目的
需求来进行处理。

而为了保障复杂度，实现上，线段树需要懒惰申请节点，即只保存“有信息”的节点。 所以当递归合并时，
某个节点为 nil，则可以不再继续递归。

线段树合并可行的前提是，在合并之后，被合并的两个树的根，不再会作为合并操作中被操作的节点。

递归过程中，若两个节点均不为 nil，则说明要么是根，要么他们的父亲也均不为 nil； 因此，合并时只要两
个节点均不为 nil，则说明这两个节点不再会作为合并操作中被操作的节点。

由于是二叉树，递归到的节点也都是包括根的一个连通子图，所以“递归的总次数”和“递归过程中两个

https://atcoder.jp/contests/abc163
https://codeforces.com/contest/1365
https://atcoder.jp/contests/abc163
https://codeforces.com/contest/1366

Last
update:
2020/06/13
01:08

2020-2021:teams:intrepidsword:2020.06.05-2020.06.11_
周报

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:intrepidsword:2020.06.05-2020.06.11_%E5%91%A8%E6%8A%A5&rev=1591981695

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:37

节点均不为 nil 的次数”同阶。

记第 i 次合并前，可以用于合并的根的数量为 r_i，记这些线段树总的节点数量为 k_i （重复也算
上）。 显然 $r_{i+1} = r_i - 2 + 1$。

考虑递归合并的过程中，两个节点均不为 nil 的情况，由于它们不会再被拿来合并，对于 k_{i+1} 的贡
献就是 $-2 + 1 = -1$。 因此，k_i 是递减的，且“递归过程中两个节点均不为 nil 的次数”，恰好等于
$k_i - k_{i+1}$。

综上，“递归过程中两个节点均不为 nil 的次数”的总和，$(k_0 - k_1) + (k_1 - k_2) + \cdots$，不会超过
最初的节点的数量。

因此总的时间复杂度和最初的节点数量等阶，通常就是 $\mathcal{O}(n \log n)$ 啦。

实现上如果确实合并掉的树没有用了，那合并时可以随便拿一个节点存信息，时间复杂度不变，空间也不
用新开。 而如果合并时均新建节点，旧的不删，则第 i 次合并时，新的节点数量也等于 $k_i -
k_{i+1}$，总的新建的节点不超过最初的节点的数量。所以可持久化时开两倍就好。

应用

容易发现，合并的两个线段树，如果存储的信息中有 key 相同的，则绝对会递归到存这个位置信息的叶子
上。

这是线段树合并最强大的性质，即我们能暴力对着公共 key 的信息进行操作。

例题 AtCoder Beginner Contest 163: F - path pass i

AtCoder Beginner Contest 163: F - path pass i

这个题目我的做法需要用到线段树合并。

题意

题意为给一个节点有颜色的树，对于每种颜色 k，计算一下有多少个不同的简单路径，至少经过一次颜
色为 k 的节点。

我的做法

我的做法是在 DFS 的过程中，直接用线段树维护一下每个颜色作为 key，对应的不同的方案数。 每次 DFS
完一个子树后，就把返回的线段树和当前节点维护的线段树“想办法”合并一下。

对于线段树 A，记对于颜色 k 记录的答案信息为 $a_{A, k}$。 为了能维护答案，还需要用线段树记录
当前根 u 的子树中，所有“到当前根 u 的路上经过有颜色为 k 的节点”的不同节点数量。 记“到
u 经过有颜色 k 节点”的节点集合为 $C_{A, k}$，大小为 $c_{A, k}$，线段树只需要记录大小。

记当前 DFS 到的节点为 u，维护的线段树为 A_u，包括根，已经合并完的总节点集合为 S_u，数量为
s_u。 再记刚 DFS 完的那个子树根为 v，子树节点集合为 S_v，大小为 s_v，返回的线段树为 A_v。

https://atcoder.jp/contests/abc163/tasks/abc163_f

2026/01/14 02:37 3/3 团队

CVBB ACM Team - https://wiki.cvbbacm.com/

记接下来合并好的线段树为 A'_u，合并完的节点总数量为 $s'_u = s_u + s_v$。

对于维护的答案，此时需要新增 S_u 和 S_v 之间，每对点形成的简单路径的贡献。 对于颜色 k 的
答案： $$a_{{A'_u}, k} = a_{{A_u}, k} + a_{{A_v}, k} + c_{{A_u}, k} * s_v + c_{{A_v}, k} * s_u -
c_{{A_u}, k} * c_{{A_v}, k}$$

其中减掉一些信息，是因为 $C_{{A_u}, k}$ 和 $C_{{A_v}, k}$ 之间的简单路径被算了两次。

对于 $c_{{A'_u}, k}$，除了节点 u 的颜色，都是两个线段树的信息直接求和。而对于节点 u 的颜色
k_u，合并后有 $c_{{A'_u}, {k_u}} = s'_u$。

其中乘一个数更新答案，可以用懒惰标记来做，在合并、修改、询问时下传标记即可。

减掉的那部分答案，就需要用一下线段树合并的性质，来将公共颜色的节点之间的简单路径的贡献处理好。

特殊地，对于 $c_{{A'_u}, {k_u}} = s'_u$ 的操作，由于只会进行边数乘 $\log n$ 次，所以总复杂度是
$\mathcal{O}(n \log n)$。

算上线段树合并的复杂度，即最初的节点数量，也即 DFS 最开始时，创建的只有一个节点信息的线段树，
总节点数量为 $\mathcal{O}(n \log n)$。

所以这个算法的总的时间复杂度为 $\mathcal{O}(n \log n)$。

后记

很麻烦？那就对了，因为这个不是正解，正解很简洁，而且是线性的时间复杂度，快去看 Tutorial 吧。

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:intrepidsword:2020.06.05-2020.06.11_%E5%91%A8%E6%8A%A5&rev=1591981695

Last update: 2020/06/13 01:08

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:intrepidsword:2020.06.05-2020.06.11_%E5%91%A8%E6%8A%A5&rev=1591981695

	[团队]
	团队
	个人
	zzh
	pmxm
	jsh

	本周推荐
	zzh
	pmxm
	jsh
	线段树合并
	应用
	例题 AtCoder Beginner Contest 163: F - path pass i
	题意
	我的做法
	后记

