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152. Writing 1/2 as a sum of inverse squares

题目大意：问有多少种方式将 $\frac{1}{2}$ 表示成 $2\sim80$ 之间的不同数的倒数平方和。

题解：感觉除了暴力没啥好的性质。首先将所有倒数平方乘上 $\text{lcm}(2^{2},\cdots,80^{2})$，就
转成了一个 meet-in-middle 问题。但是将近 $80$ 个数太多了。不知道为什么就发现了有很多数是不可能
选取的。具体来说，选取 $\text{lcm}$ 的一个小约数，你会发现大部分的元素模它为 $0$，对于模它不为
$0$ 的所有元素，直接 $2^{n}$ 枚举一下组合，然后就会发现有些数永远不能出现在组合中，否则就没法
凑出 $0$。随便选一些（其实是有一些规律的）约数筛完后，就只剩下 $30$ 多个可选的元素了。

195. Inscribed circles of triangles with one angle of 60
degrees

题目大意：大约是要求 $a^{2}-ab+b^{2}=c^{2}$ 的正整数解。

题解：部分这样的三元二次齐次不定方程有很漂亮的解法。

$$ \begin{aligned} &|a-b\omega|^{2}\\ =&|a-\frac{b}{2}-\frac{b\sqrt{3}}{2}i|\\ =&a^{2}-
ab+b^{2} \end{aligned} $$

其中，$\omega=\frac{1+\sqrt{3}i}{2}$，为 $\omega^{3}+1=0$ 的解。

$$ \begin{aligned} &(a^{2}-ab+b^{2})^{2}\\ =&|a-b\omega|^{4}\\
=&|a^{2}-2ab\omega+b^{2}\omega^{2}|^{2}\\ =&|a^{2}-b^{2}-(2ab-b^{2})\omega|^{2}\\
=&(a^{2}-b^{2})^{2}-(a^{2}-b^{2})(2ab-b^{2})+(2ab-b^{2})^{2} \end{aligned} $$

枚举 $a,b$ 即可得到通解（不会证充分性）。

251. Cardano Triplets

题目大意：求满足 $a+b+c\le n$，$\sqrt[3]{a+b\sqrt{c}}+\sqrt[3]{a-b\sqrt{c}}=1$ 的正整数
$(a,b,c)$ 数量。

题解：不妨设 $a+b\sqrt{c}=(\frac{1}{2}+t\sqrt{c})^{3}$，则 $a-b\sqrt{c}=(\frac{1}{2}-
t\sqrt{c})^{3}$。因此有：

$$ \frac{1}{8}+\frac{3}{4}t\sqrt{c}+\frac{3}{2}t^{2}c+t^{3}c\sqrt{c}=a+b\sqrt{c}\\
\frac{1}{8}-\frac{3}{4}t\sqrt{c}+\frac{3}{2}t^{2}c-t^{3}c\sqrt{c}=a-b\sqrt{c}\\ $$

两式相加、相减得

$$ \frac{1}{8}+\frac{3}{2}t^{2}c=a\tag{1} $$

$$ \frac{3}{4}t+t^{3}c=b\tag{2} $$

由式 $1$ 可得 $t^{2}$ 是有理数，由式 $2$ 可得 $t$ 是有理数。不妨设 $c$ 无平方因子，那么显然 $t$
应该有 $\frac{2k+1}{2}(k\in\mathbb{Z})$ 的形式。枚举 $c,t$ 即可。
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278. Linear Combinations of Semiprimes

$2pqr-pq-pr-qr$。

291. Panaitopol Primes

题目大意：设 $x,y\in\mathbb{N}^{+}$，$p=\frac{x^{4}-y^{4}}{x^{3}+y{3}}$，求所有 $\le n$ 且
为质数的 $p$ 的和。

题解：

$$ \begin{aligned} p&=\frac{(x^{2}+y^{2})(x-y)}{x^{2}-xy+y^{2}}\\ p(x^{2}-
xy+y^{2})&=(x^{2}+y^{2})(x-y) \end{aligned} $$

因为 $p$ 是质数，所以 $p\mid(x-y)$ 或 $p\mid(x^{2}+y^{2})$，若 $p\mid(x-y)$，那么
$(x^{2}+y^{2})\mid(x^{2}-xy+y^{2})$，矛盾。因此 $p\mid(x^{2}+y^{2})$，$(x-y)\mid (x^{2}-
xy+y^{2})$。易得 $(x-y)\mid x^{2}$，$(x-y)\mid xy$，$(x-y)\mid y^{2}$。设 $x^{2}=a(x-
y)$，$xy=b(x-y)$，$y^{2}=c(x-y)$。由于 $(x-y)^{2}=a(x-y)-2b(x-y)+c(x-y)$，因此 $(x-y)=a+c-2b$。又
由于 $x^{2}y^{2}=ac(x-y)^{2}=b^{2}(x-y)^{2}$，因此 $ac=b^{2}$。故

$$ \begin{aligned} p&=\frac{(a+c)(x-y)^{2}}{(a+c-b)(x-y)}\\ &=\frac{(a+c)(a+c-2b)}{a+c-b}
\end{aligned} $$

设 $g=\gcd(a,b,c)$，有

$$ \begin{aligned} p=g\frac{(a'+c')(a'+c'-2b')}{a'+c'-b'} \end{aligned} $$

不妨设质数 $q\mid\gcd(a'+c'-2b',a'+c'-b')$，那么 $q\mid b'$，又因为 $a'c'=b'^{2}$，因此 $q\mid a'$
或 $q\mid c'$，从而 $q\mid a',b',c'$。矛盾。同理 $\gcd(a'+c',a'+c'-b')=1$。因此 $(a'+c'-b')|g$，要使 $p$
为质数，必然有 $a'+c'-2b'=1$ 以及 $g=a'+c'-b'$。联立 $a'c'=b'^{2}$，可得 $\sqrt{a'}-\sqrt{c'}=1$。
因此 $p=a'+c'$ 有 $p=n^{2}+(n+1)^{2}(n\in\mathbb{N}^{+})$ 的形式。

319. Bounded Sequences

题目大意：定义整序列 $\{x_{n}\}$ 满足要求当且仅当：

$x_{1}=2$
$\forall 1<i\le n$，$x_{i-1}<x_{i}$
$\forall 1\le i,j\le n$，$x_{i}^{j}<(x_{j}+1)^{i}$

定义 $f(n)$ 表示长度为 $n$ 的满足要求的序列的数量，求 $f(10^{10})$。

题解：

$$ \begin{aligned} x_{i}^{j}&<(x_{j}+1)^{i}\\ j\ln x_{i}&<i\ln(x_{j}+1)\\ \frac{\ln
x_{i}}{i}&<\frac{\ln(x_{j}+1)}{j} \end{aligned} $$
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那么序列合法，当且仅当 $\exists t$ 使得 $\forall i,\frac{\ln x_{i}}{i}\le t<\frac{\ln(x_{i}+1)}{i}$，即
$e^{it}-1<x_{i}\le e^{it}$，那么 $x_{i}=\lfloor e^{it}\rfloor$。令 $i=1$ 可得 $\ln2\le t<\ln3$。

注意到 $e^{it}$ 关于 $t$ 连续且单调递增，考虑 $t$ 从 $\ln2$ 增加到 $\ln3$ 的过程，显然只有
$\exists i$ 使得 $e^{it}$ 为整数的 $t$ 才会产生一个新的序列。

设 $t=\frac{\ln z}{d}$，$z=\prod_{j=1}^{e}p_{j}^{s_{j}}$，且 $\gcd(s_{1},\cdots,s_{e},d)=1$。那
么 $e^{it}$ 为整数，当且仅当 $d|i$。$e^{it}=\prod_{j=1}^{e}p_{j}^{\frac{is_{j}}{d}}$，若
$i\nmid d$，就有 $\frac{d}{\gcd(i,d)}|s_{j}$，矛盾。

不妨设 $g(m)$ 为 $0\le t<m$ 的 $t$ 的数量，则答案为 $g(\ln3)-g(\ln2)$。考虑枚举 $d$：

$$ \begin{aligned} g(m)&=\sum_{d=1}^{n}\sum_{u\mid d}\mu(u)(e^m)^{\frac{d}{u}}\\
&=\sum_{d=1}^{n}\sum_{u\mid d}\mu(\frac{d}{u})(e^m)^{u}\\
&=\sum_{u=1}^{n}e^{mu}\sum_{u=1}^{\lfloor\frac{n}{u}\rfloor}\mu(u)\\ \end{aligned} $$

然后杜教筛就可以 $\mathcal{O}(n^{\frac{2}{3}})$ 解决啦。

443. GCD sequence

题目大意：设 $f(4)=13,f(n)=f(n-1)+\gcd(n,f(n-1))(n\ge5)$，求 $f(10^{15})$。

题解：可以猜测会有大段连续的 $1$。如果 $\gcd(n,f(n-1))=1$，那么下一个合法的位置应该和 $f(n-1)-n$
不互质，随便算算就好。实际只需要迭代几百次（很可能中间有一个大质数）。

479. Roots on the Rise

题目大意：设 $a_{k},b_{k},c_{k}$ 是方程 $\frac{1}{x}=(\frac{k}{x})(k+x^{2})-kx$ 的三根，求
$\sum_{k=1}^{10^{6}}\sum_{p=1}^{10^{6}}(a_{k}+b_{k})^{p}(b_{k}+c_{k})^{p}(c_{k}+a_
{k})^{p}$。

题解：方程化简为 $x^{3}-kx^{2}+\frac{1}{k}x-k^{2}=0$。注意到
$(a_{k}+b_{k})(b_{k}+c_{k})(c_{k}+a_{k})=(a_{k}+b_{k}+c_{k})(a_{k}b_{k}+b_{k}c_{k}+c_{k
}a_{k})-a_{k}b_{k}c_{k}=1-k^{2}$，等比数列求和一下就好了。似乎很多情况下轮换对称式都能用根
与系数的关系来表示呢。

就好了。似乎很多情况下轮换对称式都能用根与系数的关系来表示呢。

488. Unbalanced Nim

题目大意：给你三堆石子，每堆石子的数量互不相同，两人轮流取走石子，每次可以选择一堆，从中取走
一个以上的石子，要求取完之后仍要满足每堆石子的数量互不相同，最后不能操作者输。设三堆石子的数
量分别为 $a,b,c$，设 $F(n)$ 表示满足 $0<a<b<c<n$ 的所有负态的 $(a+b+c)$ 之和，求
$F(10^{18})\mod10^{9}$。

题解：先来研究负态满足的条件：

手动打表可以发现，负态为所有满足 $i\ge 0, 0\le j<2^{i},k\ge1,0\le u<2^{i}$ 的
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$(2^{i}+j-1,2^{i+1}k+u-1,2^{i+1}k+2^{i}+(j\oplus u)-1)$。为了方便证明，不妨将三个数都加上 $1$，
并稍微改写一下式子，得到：负态为所有满足 $i\ge 0, 0\le j<2^{i},k\ge1,0\le u<2^{i}$ 的
$(2^{i}+(j\oplus u),2^{i+1}k+j,2^{i+1}k+2^{i}+u)$。这等价于下面的叙述：设 $a,b,c(a<b<c)$ 的
无前导 $0$ 二进制表示分别为 $a=a'_{n_{a}}\cdots a'_{0},b=b'_{n_{b}}\cdots
b'_{0},c=c'_{n_{c}}\cdots c'_{0}$，$b$ 和 $c$ 最高的不相同的位为第 $i$ 位，则 $(a,b,c)$ 为负态的充
要条件为：$n_{b}=n_{c}$，且 $a=b\oplus c$。下面我们用归纳法来证明这一结论：

显然 $(1,2,3)$ 为负态，且满足上面的要求。

先证明不满足上面形式的状态是胜态：

若 $n_{b}<n_{c}$

若 $n_{a}=n_{b}$，则 $(a\oplus b,a,b)$ 是一个负态。

若 $n_{a}<n_{b}$

若 $b'_{n_{a}}=1$，则 $(a,a\oplus b,b)$ 是一个负态。

若 $b'_{n_{a}}=0$，则 $(a,b,a\oplus b)$ 是一个负态。

若 $n_{b}=n_{c}$

若 $a>b\oplus c$，则 $(b\oplus c,b,c)$ 是一个负态。

若 $a<b\oplus c$

若 $n_{a}<i$

若 $b'_{n_{a}}=1$，则 $(a,a\oplus b,b)$ 是一个负态。

若 $b'_{n_{a}}=0$，则 $(a,b,a\oplus b)$ 是一个负态。

若 $n_{a}=i$，我们来证明 $a\oplus c<b$ 和 $a\oplus b<c$ 至少有一个成立：
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设 $a$ 和 $b\oplus c$ 最高的不相同的位为第 $j$ 位，则有 $(a'_{n_{c}}\oplus
c'_{n_{c}})\cdots(a'_{j+1}\oplus c'_{j+1})=b'_{n_{c}}\cdots b'_{j+1}$ 和
$(a'_{n_{b}}\oplus b'_{n_{b}})\cdots(a'_{j+1}\oplus b'_{j+1})=c'_{n_{b}}\cdots
c'_{j+1}$ 均成立。又因为 $a<b\oplus c$，所以有 $a'_{j}=0,b'_{j}\oplus c’_{j}=1$，
故 $a'_{j}\oplus c'_{j}<b'_{j}$ 和 $a'_{j}\oplus b '_{j}<c'_{j}$ 至少有一个成立，即
$a\oplus c<b$ 和 $a\oplus b<c$ 至少有一个成立。$\Box$

若 $a\oplus c<b$，则 $(a,a\oplus c,c)$ 是一个负态。

若 $a\oplus b<c$，则 $(a,b,a\oplus b)$ 是一个负态。

再证明满足上面形式的状态是负态：

若从 $a$ 中取石子，由于 $a$ 是由 $b,c$ 唯一确定的，故取走 $a$ 中石子后肯定是胜态。
若从 $b$ 中取石子

若取完后 $b$ 的位数小于 $c$ 的位数，显然最大的两个数的位数不可能相等，也是一个胜态。
若取完后 $b$ 的位数等于 $c$ 的位数，根据异或运算的性质，$b$ 和 $c$ 的异或值肯定发生
了变化，$a$ 也肯定不满足负态的要求。

若从 $c$ 中取石子，与 $b$ 类似可证。$\Box$

最后的答案可以通过一个简单的数位 $dp$ 得到，这里就不再赘述了。

545. Faulhaber’s Formulas

Von Staudt–Clausen theorem

581. 47-smooth triangular numbers

Størmer’s theorem

613. Pythagorean Ant

题目大意：有一个边长 $3,4,5$ 的三角形，一只蚂蚁等概率随机地在三角形中一点，然后等概率选择一个方
向沿射线走。问穿过斜边的概率。

题解：其实就是个二重积分，但是第二重好像很恶心的样子，所以就只积了一重，第二重数值积分：

$$ \begin{aligned} &\int\pi-\arctan\frac{3-y}{x}+\arctan\frac{y}{4-x}\mathrm{d}y\\ =&\pi
y+x\left[\frac{3-y}{x}\arctan\frac{3-y}{x}-\frac{1}{2}\ln\left(1+(\frac{3-
y}{x})^{2}\right)\right]+\\ &(4-x)\left[\frac{y}{4-x}\arctan\frac{y}{4-x}-
\frac{1}{2}\ln\left(1+(\frac{y}{4-x})^{2}\right)\right]+C \end{aligned} $$

我爱 python，我爱 scipy！

https://en.wikipedia.org/wiki/Von_Staudt%E2%80%93Clausen_theorem
https://en.wikipedia.org/wiki/St%C3%B8rmer%27s_theorem
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622. Riffle Shuffles

题目大意：设排列 $p=(0,n,1,n+1,2,n+2,\cdots,n-1,2n-1)$，求出所有使得最小循环节为 $60$ 的 $2n$ 之
和。

题解：显然 $p$ 与 $p^{-1}$ 的循环节长度相同，$p^{-1}=(0,2,4,\cdots,2n-2,1,3,5,\cdots,2n-1)$。注意
到除了 $2n-1$ 之外，满足 $p^{-1}(x)=2x\mod(2n-1)$，但是 $2n-1$ 本身即成一个环，可以不用考虑。
算一算可以发现，最小循环节长度即为最小的使得 $2^{x}\equiv1\pmod{2n-1}$ 的 $x$。要使最小循环
节为 $60$，那么要有
$2n-1\mid2^{60}-1$，$2n-1\nmid2^{30}-1$，$2n-1\nmid2^{20}-1$，$2n-1\nmid2^{12}-1$。稍微算
一下即可。

624. Two heads are better than one

题目大意：随机抛一枚硬币，当出现两次正面时停止。设 $P(n)$ 表示停止时抛硬币的次数能被 $n$ 整除
的概率，求 $P(10^{18})\mod(10^{9}+9)$。

题解：设 $f_{H}(x),f_{T}(x)$ 表示当前未结束，且结尾为 H 或 T 的概率，$f_{HH}(x)$ 表示当前已经结束
的概率。那么可以写出生成函数方程：

$$ \begin{aligned} f_{HH}(x)&=\frac{1}{2}xf_{H}(x)+xf_{HH}(x)\\
f_{H}(x)&=\frac{1}{2}xf_{T}(x)+\frac{1}{2}\\
f_{T}(x)&=\frac{1}{2}x(f_{H}(x)+f_{T}(x))+\frac{1}{2}\\ \end{aligned} $$

$(2)$ 代入 $(3)$ 可得 $\displaystyle{f_{T}(x)=\frac{\frac{1}{2}+\frac{1}{4}x}{1-\frac{1}{2}x-
\frac{1}{4}x^{2}}}$，代回 $(2)$ 可得 $\displaystyle{f_{H}(x)=\frac{\frac{1}{2}}{1-\frac{1}{2}x-
\frac{1}{4}x^{2}}}$，代回 $(1)$ 可得 $\displaystyle{f_{HH}(x)=\frac{\frac{1}{4}x}{(1-
\frac{1}{2}x-\frac{1}{4}x^{2})(1-x)}}$。所求即为 $\displaystyle{(1-
x)f_{HH}(x)=\frac{\frac{1}{4}x}{1-\frac{1}{2}x-\frac{1}{4}x^{2}}}$。

因此有 $g_{0}=0,g_{1}=\frac{1}{4},g_{n}=\frac{1}{2}g_{n-1}+\frac{1}{4}g_{n-2}(n\ge2)$。可以
解得特征方程的两个根为 $654248003,845752011$。从而解得通项为
$361699202\times654248003^{n}+638300807\times845752011^{n}$。最后等比数列求和一下就好
了。

692. Siegbert and Jo

题目大意：一个游戏有 $n$ 颗石子，两人轮流拿，每人最少拿一颗，最多拿上一个人拿的两倍。第一次拿
没有限制。设 $f(n)$ 表示先手最少拿几颗保证必胜，求 $\sum_{k=1}^{n}f(k)$。

题解：这题出过很多次了，主要是 $f(n)$ 的定义给了我另一个视角看待这个问题。$f(n)$ 本身其实是可以
直接计算的，不需要分析胜负态。$f(n)$ 即为最小的 $i$，使得 $2i<f(n-i)$。答案打表找规律即可。
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711. Binary Blackboard

题目大意：给出一个正整数 $n$，并在黑板上写下 $n$ 的二进制表示，之后先手后手轮流在黑板上写正整
数的二进制表示，并保证和不超过 $2n$，不能写时游戏结束。如果 $1$ 的数量为奇数，先手胜，否则后手
胜。分析胜负态。

题解：定义 $f(n)=\text{bitcnt}(n)$。若 $\exists
x+y=n$，$y=2^{f(y)}-1,f(n)+f(x)+f(y)\equiv1\pmod{2}$，那么显然先手必胜，先手写上 $x$ 后，不论
后手写什么，先手写上 $y$ 减它即可获胜。

考虑 $n$ 最后连续的 $1$ 的数量 $d$，分类讨论（以下都是所有位不全为 $1$ 的情况）：

若 $d$ 为奇数，且前面存在一个偶数位 $b$ 为 $1$，那么令
$x=n-2^{b}+1$，$f(n)+f(x)+f(y)=2f(n)-1-d+1+b$ 为一个奇数，因此先手胜。
若 $d$ 为偶数，且前面存在一个奇数位 $b$ 为 $1$，同理先手胜。

若全部位都为 $1$，后手只需把所有数拿走就可以获胜了。

剩余两种情况，不会证了。。。

若 $d$ 为奇数，且前面所有为 $1$ 的位均为奇数，先手胜。
若 $d$ 为偶数，且前面所有为 $1$ 的位均为偶数，先手负。

741. Binary grid colouring

题目大意：在一个 $n\times n$ 的网格上黑白染色，使得每行每列均恰好有两个格子是黑的，求在旋转和
对称等价的意义下不同的方案数。

题目大意：显然需要使用 burnside 引理，总共需要计算 $5$ 种情况，分别是无限制、旋转
$90^{\circ}/270^{\circ}$ 相同、旋转 $180^{\circ}$ 相同、沿对角线对称、水平或竖直对称。

解决这道题的关键思想是将其看做一个图的邻接矩阵（但是行顺序有关系），由于每一列有 $2$ 个黑格子，
相当于每个点的度数都是 $2$，也就是说图是由若干个环组成的。确定好边集后，行之间还可以任意排列，
但是需要注意二元环的两条边交换没有意义，故每个二元环需要除 $2$。总而言之，通过枚举 $1$ 所在的
环，可以列出 $dp$ 方程：

$$ \begin{aligned} dp_i&=\sum_{j=2}^{i}\frac{A_{i-1}^{j-1}}{2}\cdot dp_{i-j}\\
&=(i-1)!\sum_{j=2}^{i}\frac{dp_{i-j}}{(i-j)!} \end{aligned} $$

答案是 $n!dp_{n}$，可以 $\mathcal{O}(n)$ 计算。

旋转 $90^{\circ}/270^{\circ}$ 时，若 $n$ 为奇数，由于黑格子的数量模 $4$ 总不为 $0$，因此无
解。$n$ 为偶数的时候，考虑左上一半格子，它旋转 $4$ 下后要每行每列各有 $2$ 个黑格子，可以证明这等
价于第 $i$ 行加第 $i$ 列的黑格子数为 $2$。考虑第 $1$ 行第 $1$ 列的放置方式，分类讨论一下可以 dp 解
决。

旋转 $180^{\circ}$ 时，考虑将第 $i$ 列和第 $n+1-i$ 列看作同一个点。$n$ 为偶数时与第一种情况大体
相同，区别在于可以有自环，并且第 $i$ 列和第 $n+1-i$ 列是两种不同的方案。$n$ 为奇数时较复杂。首
先不妨将中间行和中间列的黑点都放在两侧。第一行有两种情况，填 $1/n$ 或填其它。填 $1/n$ 时，归约
到了 $n-3$ 的情况。否则不妨设填了 $2$，那么相当于 $1$ 和 $2$ 的度只能是 $1$，那么可以枚举一下 1-2
的这一条链中间的点，然后也能归约到偶数的情况。
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沿对角线对称时与旋转 $90^{\circ}/270^{\circ}$ 类似，而沿水平/垂直对称最为简单。

时间复杂度 $\mathcal{O}(n)$。
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