
2026/01/14 05:23 1/6 前缀函数与 KMP 算法

CVBB ACM Team - https://wiki.cvbbacm.com/

前缀函数与 KMP 算法

字符串前缀和后缀定义

关于字符串前缀、真前缀，后缀、真后缀的定义详见

字符串基础

前缀函数定义

给定一个长度为 n 的字符串 s，其前缀函数被定义为一个长度为 n 的数组 π。其中 $\pi[i]$ 的定
义是：

如果子串 $s[0\ldots i]$ 有一对相等的真前缀与真后缀：$s[0\ldotsk-1]$ 和 $s[i-(k-1)\ldotsi]$，那么1.
$\pi[i]$ 就是这个相等的真前缀（或者真后缀，因为它们相等）的长度，也就是 $\pi[i]=k$；
如果不止有一对相等的，那么 $\pi[i]$ 就是其中最长的那一对的长度；2.
如果没有相等的，那么 $\pi[i]=0$。3.

简单来说 $\pi[i]$ 就是，子串 $s[0\ldotsi]$ 最长的相等的真前缀与真后缀的长度。

用数学语言描述如下： $$ \pi[i]=\max_{k=0\ldotsi}\{k:s[0\ldotsk-1]=s[i-(k-1)\ldotsi]\} $$ 特别地，规定
$\pi[0]=0$。

举例来说，对于字符串abcabcd，

$\pi[0]=0$，因为a没有真前缀和真后缀，根据规定为 0

$\pi[1]=0$，因为ab无相等的真前缀和真后缀

$\pi[2]=0$，因为abc无相等的真前缀和真后缀

$\pi[3]=1$，因为abca只有一对相等的真前缀和真后缀：a，长度为 1

$\pi[4]=2$，因为abcab相等的真前缀和真后缀为ab，长度为 2

$\pi[5]=3$，因为abcabc相等的真前缀和真后缀为abc，长度为 3

$\pi[6]=0$，因为abcabcd无相等的真前缀和真后缀

同理可以计算字符串 aabaaab 的前缀函数为 $[0,1,0,1,2,2,3]$。

计算前缀函数的朴素算法

一个直接按照定义计算前缀函数的算法流程：

在一个循环中以 $i=1\rightarrow n-1$ 的顺序计算前缀函数 $\pi[i]$ 的值（$\pi[0]$ 被赋值为 0）。
为了计算当前的前缀函数值 $\pi[i]$，我们令变量 j 从最大的真前缀长度 i 开始尝试。

Last
update:
2020/07/16
22:22

2020-2021:teams:legal_string:前缀函数
与_kmp_算法_lgwza https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%89%8D%E7%BC%80%E5%87%BD%E6%95%B0%E4%B8%8E_kmp_%E7%AE%97%E6%B3%95_lgwza&rev=1594909335

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:23

如果当前长度下真前缀和真后缀相等，则此时长度为 $\pi[i]$，否则令 j 自减 1，继续匹配，直到
$j=0$。
如果 $j=0$ 并且仍没有任何一次匹配，则置 $\pi[i]=0$ 并移至下一个下标 $i+1$。

具体实现如下：

vector<int> prefix_function(string s) {
 int n = (int)s.length();
 vector<int> pi(n);
 for (int i = 1; i < n; i++)
 for (int j = i; j >= 0; j--)
 if (s.substr(0, j) == s.substr(i - j + 1, j)) {
 pi[i] = j;
 break;
 }
 return pi;
}

注：

string substr (size_t pos = 0, size_t len = npos) const;

显见该算法的时间复杂度为 $O(n^3)$，具有很大的改进空间。

计算前缀函数的高效算法

第一个优化

第一个重要的观察是相邻的前缀函数值至多增加 1。

参照下图所示，只需如此考虑：当取一个尽可能大的 $\pi[i+1]$ 时，必然要求新增的 $s[i+1]$ 也与之对
应的字符匹配，即 $s[i+1]=s[\pi[i]]$，此时 $\pi[i+1]=\pi[i]+1$。 $$
\underbrace{\overbrace{s_0~s_1~s_2}^{\pi[i]=3}~s_3}_{\pi[i+1]=4}~\cdots~\underbrace{\overbr
ace{s_{i-2}~s_{i-1}~s_{i}}^{\pi[i]=3}~s_{i+1}}_{\pi[i+1]=4} $$ 所以当移动到下一个位置时，前缀
函数的值要么增加一，要么维持不变，要么减少。

此时的改进的算法为：

vector<int> prefix_function(string s) {
 int n = (int)s.length();
 vector<int> pi(n);
 for (int i = 1; i < n; i++)
 for (int j = pi[i - 1] + 1; j >= 0; j--) // improved: j=i =>
j=pi[i-1]+1
 if (s.substr(0, j) == s.substr(i - j + 1, j)) {
 pi[i] = j;
 break;
 }
 return pi;

2026/01/14 05:23 3/6 前缀函数与 KMP 算法

CVBB ACM Team - https://wiki.cvbbacm.com/

}

在这个初步改进的算法中，在计算每个 $\pi[i]$ 时，最好的情况是第一次字符串比较就完成了匹配，也就
是说基础的字符串比较次数是 n-1 次。

而由于存在 j=pi[i-1]+1 （pi[0]=0）对于最大字符串比较次数的限制，可以看出每次只有在最好情况
才会为字符串比较次数的上限积累 1，而每次超过一次的字符串比较消耗的是之后次数的增长空间。

由此我们可以得出字符串比较次数最多的一种情况：至少 1 次字符串比较次数的消耗和最多 n-2 次比较次
数的积累，此时字符串比较次数为 n-1 + n-2 = 2n-3。

可见经过此次优化，计算前缀函数只需要进行 $O(n)$ 次字符串比较，总复杂度降为了 $O(n^2)$。

第二个优化

在第一个优化中，我们讨论了计算 $\pi[i+1]$ 时的最好情况：$s[i+1]=s[\pi[i]]$，此时 $\pi[i+1]=\pi[i]+1$。
现在让我们沿着这个思路走得更远一点：讨论当 $s[i+1]\ne s[\pi[i]]$ 时如何跳转。

失配时，我们希望找到对于子串 $s[0\ldotsi]$，仅次于 $\pi[i]$ 的第二长度 j，使得在位置 i 的前缀性
质仍得以保持，也即 $s[0\ldotsj-1]=s[i-j+1\ldotsi]$： $$ \overbrace{\underbrace{s_0 ~ s_1}_j ~ s_2 ~
s_3}^{\pi[i]} ~ \dots ~ \overbrace{s_{i-3} ~ s_{i-2} ~ \underbrace{s_{i-1} ~ s_{i}}_j}^{\pi[i]} ~
s_{i+1} $$ 如果我们找到了这样的长度 j，那么仅需要再次比较 $s[i+1]$ 和 $s[j]$。如果它们相等，那么
就有 $\pi[i+1]=j+1$。否则，我们需要找到子串 $s[0\ldotsi]$ 仅次于 j 的第二长度 $j^{(2)}$，使得前缀
性质得以保持，如此反复，直到 $j=0$。如果 $s[i+1]\ne s[0]$，则 $\pi[i+1]=0$。

观察上图可以发现，因为 $s[0\ldots\pi[i]]=s[i-\pi[i]+1\ldotsi]$，所以对于 $s[0\ldotsi]$ 的第二长度 j，有
这样的性质： $$ s[0\ldotsj-1]=s[i-j+1\ldotsi]=s[\pi[i]-j\ldots\pi[i]-1] $$ 也就是说 j 等价于子串
$s[\pi[i]-1]$ 的前缀函数值，即 $j=\pi[\pi[i]-1]$。同理，次于 j 的第二长度等价于 $s[j-1]$ 的前缀函数值，
$j^{(2)}=\pi[j-1]$

显然我们可以得到一个关于 j 的状态转移方程：$j^{(n)}=\pi[j^{(n-1)}-1]$，$(j^{n-1}>0)$

最终算法

所以最终我们可以构建一个不需要进行任何字符串比较，并且只进行 $O(n)$ 次操作的算法。

而且该算法的实现出人意料地短且直观：

vector<int> prefix_function(string s) {
 int n = (int)s.length();
 vector<int> pi(n);
 for (int i = 1; i < n; i++) {
 int j = pi[i - 1];
 while (j > 0 && s[i] != s[j]) j = pi[j - 1];
 if (s[i] == s[j]) j++;
 pi[i] = j;
 }
 return pi;
}

这是一个在线算法，即其当数据到达时处理它——举例来说，你可以一个字符一个字符地读取字符串，立

Last
update:
2020/07/16
22:22

2020-2021:teams:legal_string:前缀函数
与_kmp_算法_lgwza https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%89%8D%E7%BC%80%E5%87%BD%E6%95%B0%E4%B8%8E_kmp_%E7%AE%97%E6%B3%95_lgwza&rev=1594909335

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:23

即处理它们以计算出每个字符的前缀函数值。该算法仍然需要 存储字符串本身以及先前计算过的前缀函数
值，但如果我们已经预先知道该字符串前缀函数的最大可能取值 M，那么我们仅需要存储该字符串的前
$M+1$ 个字符以及对应的前缀函数值。

吐槽一下：虽然这个改进后的计算前缀函数的算法看起来很厉害，但是在基准测试中发现，当模式串 s
的长度 n 不是很大（100以内）的情况下，其实和朴素算法也没有什么区别。

应用

在字符串中查找子串：Knuth-Morris-Pratt 算法

该算法由 Knuth、Pratt 和 Morris 在 1977 年共同发布。

该任务是前缀函数的一个典型应用。

给定一个文本 t 和一个字符串 s，我们尝试找到并展示 s 在 t 中的所有出现（occurrence）。

为了简便起见，我们用 n 表示字符串 s 的长度，用 m 表示文本 t 的长度。

我们构造一个字符串 $s+\#+t$，其中 $\#$ 为一个既不出现在 s 中也不出现在 t 中的分隔符。接下来
计算该字符串的前缀函数。现在考虑该前缀函数除去最开始 $n+1$ 个值（即属于字符串 s 和分隔符的
函数值）后其余函数值的意义。根据定义，$\pi[i]$ 为右端点在 i 且同时为一个前缀的最长真子串的长度，
具体到我们的这种情况下，其值为与 s 的前缀相同且右端点位于 i 的最长子串的长度。由于分隔符的
存在，该长度不可能超过 n。而如果等式 $\pi[i]=n$ 成立，则意味着 s 完整出现在该位置（即其右端
点位于位置 i）。注意该位置的下标是对字符串 $s+\#+t$ 而言的。

因此如果在某一位置 i 有 $\pi[i]=n$ 成立，则字符串 s 在字符串 t 的 $i-(n-1)-(n+1)=i-2n$ 处出现。

正如前缀函数的计算中已经提到的那样，如果我们知道前缀函数的值永远不超过一特定的值，那么我们不
需要存储整个字符串以及整个前缀函数，而只需要二者开头的一部分。在这种情况下这意味着只需要存储
字符串 $s+\#$ 以及相应的前缀函数值即可。我们可以一次读入字符串 t 的一个字符并计算当前位置的
前缀函数值。

因此 Knuth-Morris-Pratt 算法（简称 KMP 算法）用 $O(n+m)$ 的时间以及 $O(n)$ 的内存解决了该问题。

统计每个前缀的出现次数

在该节我们将同时讨论两个问题。给定一个长度为 n 的字符串 s，在问题的第一个变种中，我们希望
统计每个前缀 $s[0\ldotsi]$ 在同一个字符串的出现次数，在问题的第二个变种中，我们希望统计每个前缀
$s[0\ldotsi]$ 在另一个给定字符串 t 中的出现次数。

首先让我们来解决第一个问题。考虑位置 i 的前缀函数值 $\pi[i]$。根据定义，其意味着字符串 s 一个
长度为 $\pi[i]$ 的前缀在位置 i 出现并以 i 为右端点，同时不存在一个更长的前缀满足前述定义。与
此同时，更短的前缀可能以该位置为右端点。容易看出，我们遇到了在计算前缀函数时已经回答过的问题：
给定一个长度为 j 的前缀，同时其也是一个右端点位于 i 的后缀，下一个更小的前缀长度 $k<j$ 是多
少？该长度的前缀需同时也是一个右端点为 i 的后缀。因此以位置 i 为右端点，有长度为 $\pi[i]$ 的
前缀，有长度为 $\pi[\pi[i]-1]$ 的前缀，有长度为 $\pi[\pi[\pi[i]-1]-1]$ 的前缀，等等，直到长度变为 0。
故而我们可以通过下述方式计算答案。

2026/01/14 05:23 5/6 前缀函数与 KMP 算法

CVBB ACM Team - https://wiki.cvbbacm.com/

vector<int> ans(n + 1);
for (int i = 0; i < n; i++) ans[pi[i]]++;
for (int i = n - 1; i > 0; i--) ans[pi[i - 1]] += ans[i];
for (int i = 0; i <= n; i++) ans[i]++;

在上述代码中我们首先统计每个前缀函数值在数组 π 中出现了多少次，然后再计算最后答案：如果我
们知道长度为 i 的前缀出现了恰好 $ans[i]$ 次，那么该值必须被叠加至其最长的既是后缀也是前缀的子
串的出现次数中。在最后，为了统计原始的前缀，我们对每个结果加 1。

现在考虑第二个问题。我们应用来自 Knuth-Morris-Pratt 的技巧：构造一个字符串 $s+\#+t$ 并计算其前
缀函数。与第一个问题唯一的不同之处在于，我们只关心与字符串 t 相关的前缀函数值，即 $i\ge n+1$
的 $\pi[i]$。有了这些值之后，我们可以同样应用在第一个问题中的算法来解决该问题。

一个字符串中本质不同子串的数目

待补

字符串压缩

待补

根据前缀函数构建一个自动机

待补

练习题目

UVA 455 “Periodic Strings”
UVA 11022 “String Factoring”
UVA 11452 “Dancing the Cheeky-Cheeky”
UVA 12604 - Caesar Cipher
UVA 12467 - Secret Word
UVA 11019 - Matrix Matcher
SPOJ - Pattern Find
Codeforces - Anthem of Berland
Codeforces - MUH and Cube Walls

参考链接

Oi Wiki

http://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=396
http://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1963
http://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=2447
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4282
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3911
https://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=1960
http://www.spoj.com/problems/NAJPF/
http://codeforces.com/contest/808/problem/G
http://codeforces.com/problemset/problem/471/D
https://oi-wiki.org/string/kmp/

Last
update:
2020/07/16
22:22

2020-2021:teams:legal_string:前缀函数
与_kmp_算法_lgwza https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%89%8D%E7%BC%80%E5%87%BD%E6%95%B0%E4%B8%8E_kmp_%E7%AE%97%E6%B3%95_lgwza&rev=1594909335

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:23

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%89%8D%E7%BC%80%E5%87%BD%E6%95%B0%E4%B8%8E_kmp_%E7%AE%97%E6%B3%95_lgwza&rev=1594909335

Last update: 2020/07/16 22:22

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%89%8D%E7%BC%80%E5%87%BD%E6%95%B0%E4%B8%8E_kmp_%E7%AE%97%E6%B3%95_lgwza&rev=1594909335

	前缀函数与 KMP 算法
	字符串前缀和后缀定义
	字符串基础

	前缀函数定义
	计算前缀函数的朴素算法
	计算前缀函数的高效算法
	第一个优化
	第二个优化
	最终算法

	应用
	在字符串中查找子串：Knuth-Morris-Pratt 算法
	统计每个前缀的出现次数
	一个字符串中本质不同子串的数目
	字符串压缩
	根据前缀函数构建一个自动机

	练习题目
	参考链接

