
2026/01/14 06:53 1/5 后缀数组(SA)

CVBB ACM Team - https://wiki.cvbbacm.com/

后缀数组(SA)

一些约定

字符串相关的定义请参考字符串基础

字符串下标从 1 开始。

“后缀 i”代指以第 i 个字符开头的后缀。

后缀数组是什么？

后缀数组(Suffix Array)主要是两个数组：sa 和 rk。

其中，$sa[i]$ 表示将所有后缀排序后第 i 小的后缀的编号。$rk[i]$ 表示后缀 i 的排名。

这两个数组满足性质：$sa[rk[i]]=rk[sa[i]]=i$。

后缀数组示例：

后缀数组怎么求？

https://wiki.cvbbacm.com/lib/exe/fetch.php?tok=b844e5&media=https%3A%2F%2Foi-wiki.org%2Fstring%2Fimages%2Fsa1.png

Last
update:
2020/07/24
16:07

2020-2021:teams:legal_string:后缀数
组_lgwza https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%90%8E%E7%BC%80%E6%95%B0%E7%BB%84_lgwza&rev=1595578073

https://wiki.cvbbacm.com/ Printed on 2026/01/14 06:53

$O(n^2\log n)$ 做法

我相信这个做法大家还是能自己想到的，用 string + sort 就可以了。由于比较两个字符串是 $O(n)$
的，所以排序是 $O(n^2\log n)$ 的。

$O(n\log^2n)$ 做法

这个做法要用到倍增的思想。

先对每个长度为 1 的子串（即每个字符）进行排序。

假设我们已经知道了长度为 w 的子串的排名 $rk_w[1..n]$ （即，$rk_w[i]$ 表示 $s[i..\min(i+w-1,n)]$
在 $\{s[x..\min(x+w-1,n)]|x\in[1,n]\}$ 中的排名），那么，以 $rk_w[i]$ 为第一关键字，$rk_w[i+w]$ 为
第二关键字（若 $i+w>n$ 则令 $rk_w[i+w]$ 为无穷小）进行排序，就可以求出 $rk_{2w}[1..n]$。

倍增排序示意图：

如果用 sort 进行排序，复杂度就是 $O(n\log^2n)$的。

参考代码：

https://wiki.cvbbacm.com/lib/exe/fetch.php?tok=09a388&media=https%3A%2F%2Foi-wiki.org%2Fstring%2Fimages%2Fsa2.png

2026/01/14 06:53 3/5 后缀数组(SA)

CVBB ACM Team - https://wiki.cvbbacm.com/

#include <algorithm>
#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

const int N = 1000010;

char s[N];
int n, w, sa[N], rk[N << 1], oldrk[N << 1];
// 为了防止访问 rk[i+w] 导致数组越界，开两倍数组。
// 当然也可以在访问前判断是否越界，但直接开两倍数组方便一些。

int main() {
 int i, p;

 scanf("%s", s + 1);
 n = strlen(s + 1);
 for (i = 1; i <= n; ++i) sa[i] = i, rk[i] = s[i];

 for (w = 1; w < n; w <<= 1) {
 sort(sa + 1, sa + n + 1, [](int x, int y) {
 return rk[x] == rk[y] ? rk[x + w] < rk[y + w] : rk[x] < rk[y];
 }); // 这里用到了 lambda
 memcpy(oldrk, rk, sizeof(rk));
 // 由于计算 rk 的时候原来的 rk 会被覆盖，要先复制一份
 for (p = 0, i = 1; i <= n; ++i) {
 if (oldrk[sa[i]] == oldrk[sa[i - 1]] &&
 oldrk[sa[i] + w] == oldrk[sa[i - 1] + w]) {
 rk[sa[i]] = p;
 } else {
 rk[sa[i]] = ++p;
 } // 若两个子串相同，它们对应的 rk 也需要相同，所以要去重
 }
 }

 for (i = 1; i <= n; ++i) printf("%d ", sa[i]);

 return 0;
}

$O(n\log n)$ 做法

在刚刚的 $O(n\log^2n)$ 做法中，单次排序是 $O(n\log n)$ 的，如果能 $O(n)$ 排序，就能在 $O(n\log
n)$ 计算后缀数组了。

前置知识：计数排序，基数排序。

由于计算后缀数组的过程中排序的关键字是排名，值域为 $O(n)$，并且是一个双关键字的排序，可以使用

Last
update:
2020/07/24
16:07

2020-2021:teams:legal_string:后缀数
组_lgwza https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%90%8E%E7%BC%80%E6%95%B0%E7%BB%84_lgwza&rev=1595578073

https://wiki.cvbbacm.com/ Printed on 2026/01/14 06:53

基数排序优化至 $O(n)$。

参考代码：

#include <algorithm>
#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

const int N = 1000010;

char s[N];
int n, sa[N], rk[N << 1], oldrk[N << 1], id[N], cnt[N];

int main() {
 int i, m, p, w;

 scanf("%s", s + 1);
 n = strlen(s + 1);
 m = max(n, 300);
 for (i = 1; i <= n; ++i) ++cnt[rk[i] = s[i]];
 for (i = 1; i <= m; ++i) cnt[i] += cnt[i - 1];
 for (i = n; i >= 1; --i) sa[cnt[rk[i]]--] = i;

 for (w = 1; w < n; w <<= 1) {
 memset(cnt, 0, sizeof(cnt));
 for (i = 1; i <= n; ++i) id[i] = sa[i];
 for (i = 1; i <= n; ++i) ++cnt[rk[id[i] + w]];
 for (i = 1; i <= m; ++i) cnt[i] += cnt[i - 1];
 for (i = n; i >= 1; --i) sa[cnt[rk[id[i] + w]]--] = id[i];
 memset(cnt, 0, sizeof(cnt));
 for (i = 1; i <= n; ++i) id[i] = sa[i];
 for (i = 1; i <= n; ++i) ++cnt[rk[id[i]]];
 for (i = 1; i <= m; ++i) cnt[i] += cnt[i - 1];
 for (i = n; i >= 1; --i) sa[cnt[rk[id[i]]]--] = id[i];
 memcpy(oldrk, rk, sizeof(rk));
 for (p = 0, i = 1; i <= n; ++i) {
 if (oldrk[sa[i]] == oldrk[sa[i - 1]] &&
 oldrk[sa[i] + w] == oldrk[sa[i - 1] + w]) {
 rk[sa[i]] = p;
 } else {
 rk[sa[i]] = ++p;
 }
 }
 }

 for (i = 1; i <= n; ++i) printf("%d ", sa[i]);

2026/01/14 06:53 5/5 后缀数组(SA)

CVBB ACM Team - https://wiki.cvbbacm.com/

 return 0;
}

一些常数优化

如果你把上面那份代码交到 LOJ #111: 后缀排序 上：

这是因为，上面那份代码的常数的确很大。

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%90%8E%E7%BC%80%E6%95%B0%E7%BB%84_lgwza&rev=1595578073

Last update: 2020/07/24 16:07

https://loj.ac/problem/111
https://loj.ac/problem/111
https://wiki.cvbbacm.com/lib/exe/fetch.php?tok=049ba7&media=https%3A%2F%2Foi-wiki.org%2Fstring%2Fimages%2Fsa3.png
https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%90%8E%E7%BC%80%E6%95%B0%E7%BB%84_lgwza&rev=1595578073

	后缀数组(SA)
	一些约定
	后缀数组是什么？
	后缀数组怎么求？
	$O(n^2\log n)$ 做法
	$O(n\log^2n)$ 做法
	$O(n\log n)$ 做法
	一些常数优化

