
2026/01/14 06:40 1/10 后缀数组(SA)

CVBB ACM Team - https://wiki.cvbbacm.com/

后缀数组(SA)

一些约定

字符串相关的定义请参考字符串基础

字符串下标从 1 开始。

“后缀 i”代指以第 i 个字符开头的后缀。

后缀数组是什么？

后缀数组(Suffix Array)主要是两个数组：sa 和 rk。

其中，$sa[i]$ 表示将所有后缀排序后第 i 小的后缀的编号。$rk[i]$ 表示后缀 i 的排名。

这两个数组满足性质：$sa[rk[i]]=rk[sa[i]]=i$。

后缀数组示例：

后缀数组怎么求？

https://wiki.cvbbacm.com/lib/exe/fetch.php?tok=b844e5&media=https%3A%2F%2Foi-wiki.org%2Fstring%2Fimages%2Fsa1.png

Last
update:
2020/07/24
16:12

2020-2021:teams:legal_string:后缀数
组_lgwza https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%90%8E%E7%BC%80%E6%95%B0%E7%BB%84_lgwza&rev=1595578366

https://wiki.cvbbacm.com/ Printed on 2026/01/14 06:40

$O(n^2\log n)$ 做法

我相信这个做法大家还是能自己想到的，用 string + sort 就可以了。由于比较两个字符串是 $O(n)$
的，所以排序是 $O(n^2\log n)$ 的。

$O(n\log^2n)$ 做法

这个做法要用到倍增的思想。

先对每个长度为 1 的子串（即每个字符）进行排序。

假设我们已经知道了长度为 w 的子串的排名 $rk_w[1..n]$ （即，$rk_w[i]$ 表示 $s[i..\min(i+w-1,n)]$
在 $\{s[x..\min(x+w-1,n)]|x\in[1,n]\}$ 中的排名），那么，以 $rk_w[i]$ 为第一关键字，$rk_w[i+w]$ 为
第二关键字（若 $i+w>n$ 则令 $rk_w[i+w]$ 为无穷小）进行排序，就可以求出 $rk_{2w}[1..n]$。

倍增排序示意图：

如果用 sort 进行排序，复杂度就是 $O(n\log^2n)$的。

参考代码：

https://wiki.cvbbacm.com/lib/exe/fetch.php?tok=09a388&media=https%3A%2F%2Foi-wiki.org%2Fstring%2Fimages%2Fsa2.png

2026/01/14 06:40 3/10 后缀数组(SA)

CVBB ACM Team - https://wiki.cvbbacm.com/

#include <algorithm>
#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

const int N = 1000010;

char s[N];
int n, w, sa[N], rk[N << 1], oldrk[N << 1];
// 为了防止访问 rk[i+w] 导致数组越界，开两倍数组。
// 当然也可以在访问前判断是否越界，但直接开两倍数组方便一些。

int main() {
 int i, p;

 scanf("%s", s + 1);
 n = strlen(s + 1);
 for (i = 1; i <= n; ++i) sa[i] = i, rk[i] = s[i];

 for (w = 1; w < n; w <<= 1) {
 sort(sa + 1, sa + n + 1, [](int x, int y) {
 return rk[x] == rk[y] ? rk[x + w] < rk[y + w] : rk[x] < rk[y];
 }); // 这里用到了 lambda
 memcpy(oldrk, rk, sizeof(rk));
 // 由于计算 rk 的时候原来的 rk 会被覆盖，要先复制一份
 for (p = 0, i = 1; i <= n; ++i) {
 if (oldrk[sa[i]] == oldrk[sa[i - 1]] &&
 oldrk[sa[i] + w] == oldrk[sa[i - 1] + w]) {
 rk[sa[i]] = p;
 } else {
 rk[sa[i]] = ++p;
 } // 若两个子串相同，它们对应的 rk 也需要相同，所以要去重
 }
 }

 for (i = 1; i <= n; ++i) printf("%d ", sa[i]);

 return 0;
}

$O(n\log n)$ 做法

在刚刚的 $O(n\log^2n)$ 做法中，单次排序是 $O(n\log n)$ 的，如果能 $O(n)$ 排序，就能在 $O(n\log
n)$ 计算后缀数组了。

前置知识：计数排序，基数排序。

由于计算后缀数组的过程中排序的关键字是排名，值域为 $O(n)$，并且是一个双关键字的排序，可以使用

Last
update:
2020/07/24
16:12

2020-2021:teams:legal_string:后缀数
组_lgwza https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%90%8E%E7%BC%80%E6%95%B0%E7%BB%84_lgwza&rev=1595578366

https://wiki.cvbbacm.com/ Printed on 2026/01/14 06:40

基数排序优化至 $O(n)$。

参考代码：

#include <algorithm>
#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

const int N = 1000010;

char s[N];
int n, sa[N], rk[N << 1], oldrk[N << 1], id[N], cnt[N];

int main() {
 int i, m, p, w;

 scanf("%s", s + 1);
 n = strlen(s + 1);
 m = max(n, 300);
 for (i = 1; i <= n; ++i) ++cnt[rk[i] = s[i]];
 for (i = 1; i <= m; ++i) cnt[i] += cnt[i - 1];
 for (i = n; i >= 1; --i) sa[cnt[rk[i]]--] = i;

 for (w = 1; w < n; w <<= 1) {
 memset(cnt, 0, sizeof(cnt));
 for (i = 1; i <= n; ++i) id[i] = sa[i];
 for (i = 1; i <= n; ++i) ++cnt[rk[id[i] + w]];
 for (i = 1; i <= m; ++i) cnt[i] += cnt[i - 1];
 for (i = n; i >= 1; --i) sa[cnt[rk[id[i] + w]]--] = id[i];
 memset(cnt, 0, sizeof(cnt));
 for (i = 1; i <= n; ++i) id[i] = sa[i];
 for (i = 1; i <= n; ++i) ++cnt[rk[id[i]]];
 for (i = 1; i <= m; ++i) cnt[i] += cnt[i - 1];
 for (i = n; i >= 1; --i) sa[cnt[rk[id[i]]]--] = id[i];
 memcpy(oldrk, rk, sizeof(rk));
 for (p = 0, i = 1; i <= n; ++i) {
 if (oldrk[sa[i]] == oldrk[sa[i - 1]] &&
 oldrk[sa[i] + w] == oldrk[sa[i - 1] + w]) {
 rk[sa[i]] = p;
 } else {
 rk[sa[i]] = ++p;
 }
 }
 }

 for (i = 1; i <= n; ++i) printf("%d ", sa[i]);

2026/01/14 06:40 5/10 后缀数组(SA)

CVBB ACM Team - https://wiki.cvbbacm.com/

 return 0;
}

一些常数优化

如果你把上面那份代码交到 LOJ #111: 后缀排序 上：

这是因为，上面那份代码的常数的确很大。

第二关键字无需计数排序

实际上，像这样就可以了：

for (p = 0, i = n; i > n - w; --i) id[++p] = i;
for (i = 1; i <= n; ++i) {
 if (sa[i] > w) id[++p] = sa[i] - w;
}

意会一下，先把 $s[i+w..i+2w-1]$ 为空串（即第二关键字为无穷小）的位置放前面，再把剩下的按排好
的顺序放进去。

优化计数排序的值域

每次对 rk 进行去重之后，我们都计算了一个 p，这个 p 即是 rk 的值域，将值域改成它即可。

将 rk[id[i]] 存下来，减少不连续内存访问

这个在数据范围较大时效果非常明显。

用函数 cmp 来计算是否重复

https://loj.ac/problem/111
https://loj.ac/problem/111
https://wiki.cvbbacm.com/lib/exe/fetch.php?tok=049ba7&media=https%3A%2F%2Foi-wiki.org%2Fstring%2Fimages%2Fsa3.png

Last
update:
2020/07/24
16:12

2020-2021:teams:legal_string:后缀数
组_lgwza https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%90%8E%E7%BC%80%E6%95%B0%E7%BB%84_lgwza&rev=1595578366

https://wiki.cvbbacm.com/ Printed on 2026/01/14 06:40

同样是减少不连续内存访问，在数据范围较大时效果比较明显。

把 oldrk[sa[i]] == oldrk[sa[i - 1]] && oldrk[sa[i] + w] == oldrk[sa[i - 1] +
w] 替换成 cmp(sa[i], sa[i - 1], w) ， bool cmp(int x, int y, int w) { return
oldrk[x] == oldrk[y] && oldrk[x + w] == oldrk[y + w]; } 。

参考代码：

#include <algorithm>
#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

const int N = 1000010;

char s[N];
int n, sa[N], rk[N], oldrk[N << 1], id[N], px[N], cnt[N];
// px[i] = rk[id[i]]（用于排序的数组所以叫 px）

bool cmp(int x, int y, int w) {
 return oldrk[x] == oldrk[y] && oldrk[x + w] == oldrk[y + w];
}

int main() {
 int i, m = 300, p, w;

 scanf("%s", s + 1);
 n = strlen(s + 1);
 for (i = 1; i <= n; ++i) ++cnt[rk[i] = s[i]];
 for (i = 1; i <= m; ++i) cnt[i] += cnt[i - 1];
 for (i = n; i >= 1; --i) sa[cnt[rk[i]]--] = i;

 for (w = 1; w < n; w <<= 1, m = p) { // m=p 就是优化计数排序值域
 for (p = 0, i = n; i > n - w; --i) id[++p] = i;
 for (i = 1; i <= n; ++i)
 if (sa[i] > w) id[++p] = sa[i] - w;
 memset(cnt, 0, sizeof(cnt));
 for (i = 1; i <= n; ++i) ++cnt[px[i] = rk[id[i]]];
 for (i = 1; i <= m; ++i) cnt[i] += cnt[i - 1];
 for (i = n; i >= 1; --i) sa[cnt[px[i]]--] = id[i];
 memcpy(oldrk, rk, sizeof(rk));
 for (p = 0, i = 1; i <= n; ++i)
 rk[sa[i]] = cmp(sa[i], sa[i - 1], w) ? p : ++p;
 }

 for (i = 1; i <= n; ++i) printf("%d ", sa[i]);

 return 0;

2026/01/14 06:40 7/10 后缀数组(SA)

CVBB ACM Team - https://wiki.cvbbacm.com/

}

$O(n)$ 做法

在一般的题目中，常数较小的倍增求后缀数组是完全够用的，求后缀数组以外的部分也经常有 $O(n\log
n)$ 的复杂度，倍增求解后缀数组不会成为瓶颈。

但如果遇到特殊题目、时限较紧的题目，或者是你想追求更短的用时，就需要学习 $O(n)$ 求后缀数组的
方法。

SA-IS

可以参考 诱导排序与 SA-IS 算法 。

DC3

可以参考 2009 后缀数组——处理字符串的有力工具 by. 罗穗骞。

后缀数组的应用

寻找最小的循环移动位置

将字符串 S 复制一份变成 SS 就转化成了后缀排序问题。

例题： 「JSOI2007」字符加密 。

在字符串中找子串

任务是在线地在主串 T 中寻找模式串 S。在线的意思是，我们已经预先知道主串 T，但是当且仅当询
问时才知道模式串 S。我们可以先构造出 T 的后缀数组，然后查找子串 S。若子串 S 在 T 中出
现，它必定是 T 的一些后缀的前缀。因为我们已经将所有后缀排序了，我们可以通过在 sa 数组中二
分查找来实现。比较子串 S 和当前后缀的时间复杂度为 $O(|S|)$，因此找子串的时间复杂度为
$O(|S|\log |T|)$。注意，如果该子串在 T 中出现了多次，每次出现都是在 sa 数组中相邻的。因此出
现次数可以通过再次二分找到，输出每次出现的位置也很轻松。

从字符串首尾取字符最小化字典序

例题：「USACO07DEC」Best Cow Line 。

题意：给你一个字符串，每次从首或尾取一个字符组成字符串，问所有能够组成的字符串中最小的一个。

题解：暴力做法就是每次最坏 $O(n)$ 地判断当前应该取首还是尾（即比较取首得到的字符串与取尾得
到的反串的大小），只需优化这一判断过程即可。

https://riteme.site/blog/2016-6-19/sais.html
https://riteme.site/blog/2016-6-19/sais.html
https://riteme.site/blog/2016-6-19/sais.html
https://wenku.baidu.com/view/5b886b1ea76e58fafab00374.html
https://wenku.baidu.com/view/5b886b1ea76e58fafab00374.html
https://wenku.baidu.com/view/5b886b1ea76e58fafab00374.html
https://www.luogu.com.cn/problem/P4051
https://www.luogu.com.cn/problem/P4051
https://www.luogu.com.cn/problem/P2870

Last
update:
2020/07/24
16:12

2020-2021:teams:legal_string:后缀数
组_lgwza https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%90%8E%E7%BC%80%E6%95%B0%E7%BB%84_lgwza&rev=1595578366

https://wiki.cvbbacm.com/ Printed on 2026/01/14 06:40

由于需要在原串后缀与反串后缀构成的集合内比较大小，可以将反串拼接在原串后，并在中间加上一个
没出现过的字符（如 # ，代码中可以直接使用空字符），求后缀数组，即可 $O(1)$ 完成这一判断。

参考代码：

#include <cctype>
#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

const int N = 1000010;

char s[N];
int n, sa[N], id[N], oldrk[N << 1], rk[N << 1], px[N], cnt[N];

bool cmp(int x, int y, int w) {
 return oldrk[x] == oldrk[y] && oldrk[x + w] == oldrk[y + w];
}

int main() {
 int i, w, m = 200, p, l = 1, r, tot = 0;

 cin >> n;
 r = n;

 for (i = 1; i <= n; ++i)
 while (!isalpha(s[i] = getchar()))
 ;
 for (i = 1; i <= n; ++i) rk[i] = rk[2 * n + 2 - i] = s[i];

 n = 2 * n + 1;

 for (i = 1; i <= n; ++i) ++cnt[rk[i]];
 for (i = 1; i <= m; ++i) cnt[i] += cnt[i - 1];
 for (i = n; i >= 1; --i) sa[cnt[rk[i]]--] = i;

 for (w = 1; w < n; w <<= 1, m = p) {
 for (p = 0, i = n; i > n - w; --i) id[++p] = i;
 for (i = 1; i <= n; ++i)
 if (sa[i] > w) id[++p] = sa[i] - w;
 memset(cnt, 0, sizeof(cnt));
 for (i = 1; i <= n; ++i) ++cnt[px[i] = rk[id[i]]];
 for (i = 1; i <= m; ++i) cnt[i] += cnt[i - 1];
 for (i = n; i >= 1; --i) sa[cnt[px[i]]--] = id[i];
 memcpy(oldrk, rk, sizeof(rk));
 for (p = 0, i = 1; i <= n; ++i)
 rk[sa[i]] = cmp(sa[i], sa[i - 1], w) ? p : ++p;
 }

2026/01/14 06:40 9/10 后缀数组(SA)

CVBB ACM Team - https://wiki.cvbbacm.com/

 while (l <= r) {
 printf("%c", rk[l] < rk[n + 1 - r] ? s[l++] : s[r--]);
 if ((++tot) % 80 == 0) puts("");
 }

 return 0;
}

height 数组

LCP（最长公共前缀）

两个字符串 S 和 T 的 LCP 就是最大的 x ($x\le\min(|S|,|T|)$) 使得 $S_i=T_i(\forall1\le i\le x)$。

下文中以 $lcp(i,j)$ 表示后缀 i 和后缀 j 的最长公共前缀（的长度）。

height 数组的定义

$height[i]=lcp(sa[i],sa[i-1])$，即第 i 名的后缀与它前一名的后缀的最长公共前缀。

$height[1]$ 可以视作 0。

O(n) 求 height 数组需要的一个引理

$height[rk[i]]\ge height[rk[i-1]]-1$

证明：

略

O(n) 求 height 数组的代码实现

利用上面这个引理暴力求即可：

for (i = 1, k = 0; i <= n; ++i) {
 if (k) --k;
 while (s[i + k] == s[sa[rk[i] - 1] + k]) ++k;
 ht[rk[i]] = k; // height太长了缩写为ht
}

k 不会超过 n，最多减 n 次，所以最多加 $2n$ 次，总复杂度就是 $O(n)$。

未完待续

Last
update:
2020/07/24
16:12

2020-2021:teams:legal_string:后缀数
组_lgwza https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%90%8E%E7%BC%80%E6%95%B0%E7%BB%84_lgwza&rev=1595578366

https://wiki.cvbbacm.com/ Printed on 2026/01/14 06:40

参考链接

参考链接

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%90%8E%E7%BC%80%E6%95%B0%E7%BB%84_lgwza&rev=1595578366

Last update: 2020/07/24 16:12

https://oi-wiki.org/string/sa/
https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%90%8E%E7%BC%80%E6%95%B0%E7%BB%84_lgwza&rev=1595578366

	后缀数组(SA)
	一些约定
	后缀数组是什么？
	后缀数组怎么求？
	$O(n^2\log n)$ 做法
	$O(n\log^2n)$ 做法
	$O(n\log n)$ 做法
	一些常数优化
	第二关键字无需计数排序
	优化计数排序的值域
	将 rk[id[i]] 存下来，减少不连续内存访问
	用函数 cmp 来计算是否重复

	$O(n)$ 做法
	SA-IS
	DC3

	后缀数组的应用
	寻找最小的循环移动位置
	在字符串中找子串
	从字符串首尾取字符最小化字典序

	height 数组
	LCP（最长公共前缀）
	height 数组的定义
	O(n) 求 height 数组需要的一个引理
	O(n) 求 height 数组的代码实现

	参考链接

