
2026/01/14 03:28 1/6 字典树(Trie)

CVBB ACM Team - https://wiki.cvbbacm.com/

字典树(Trie)

字典树，英文名 trie。顾名思义，就是一个像字典一样的树。

简介

先放一张图：

可以发现，这棵字典树用边来代表字母，而从根结点到树上某一结点的路径就代表了一个字符串。举个例
子， $1\rightarrow4\rightarrow8\rightarrow12$ 表示的就是字符串 caa。

https://wiki.cvbbacm.com/lib/exe/fetch.php?tok=cd0cf9&media=https%3A%2F%2Foi-wiki.org%2Fstring%2Fimages%2Ftrie1.png

Last
update:
2020/07/16
22:08

2020-2021:teams:legal_string:字典
树_trie_lgwza https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%AD%97%E5%85%B8%E6%A0%91_trie_lgwza&rev=1594908525

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:28

trie 的结构非常好懂，我们用 $\delta(u,c)$ 表示结点 u 的 c 字符指向的下一个结点，或者说是结点
u 代表的字符串后面添加一个字符 c 形成的字符串的结点。（c 的取值范围和字符集大小有关，不一
定是 $0\sim26$。）

有时需要标记插入进 trie 的是哪些字符串，每次插入完成时在这个字符串所代表的结点处打上标记即可。

代码实现

放一个结构体封装的模板：

struct trie {
 int nex[100000][26], cnt;
 bool exist[100000]; // 该结点结尾的字符串是否存在

 void insert(char *s, int l) { // 插入字符串
 int p = 0;
 for (int i = 0; i < l; i++) {
 int c = s[i] - 'a';
 if (!nex[p][c]) nex[p][c] = ++cnt; // 如果没有，就添加结点
 p = nex[p][c];
 }
 exist[p] = 1;
 }
 bool find(char *s, int l) { // 查找字符串
 int p = 0;
 for (int i = 0; i < l; i++) {
 int c = s[i] - 'a';
 if (!nex[p][c]) return 0;
 p = nex[p][c];
 }
 return exist[p];
 }
};

应用

检索字符串

字典树最基础的应用——查找一个字符串是否在“字典”中出现过。

[[https://www.luogu.com.cn/problem/P2580|于是他错误的点名开始了]] 给你 n 个名字串，然后进
行 m 次点名，每次你需要回答“名字不存在”、“第一次点到这个名字”、“已经点过这个名字”
之一。 $1\le n\le 10^4,1\le m\le 10^5$，所有字符串长度不超过 50。 > 题解 > > 对所有名字建 trie，再
在 trie 中查询字符串是否存在、是否已经点过名，第一次点名时标记为点过名。

参考代码 #include const int N = 500010; char s[60]; int n, m, ch[N][26],
tag[N], tot = 1; int main() { scanf("%d", &n); for (int i = 1; i <= n;

2026/01/14 03:28 3/6 字典树(Trie)

CVBB ACM Team - https://wiki.cvbbacm.com/

++i) { scanf("%s", s + 1); int u = 1; for (int j = 1; s[j]; ++j) { int c
= s[j] - 'a'; if (!ch[u][c]) ch[u][c] = ++tot; u = ch[u][c]; } tag[u] =
1; } scanf("%d", &m); while (m--) { scanf("%s", s + 1); int u = 1; for
(int j = 1; s[j]; ++j) { int c = s[j] - 'a'; u = ch[u][c]; if (!u)
break; // 不存在对应字符的出边说明名字不存在 } if (tag[u] == 1) { tag[u] = 2;
puts("OK"); } else if (tag[u] == 2) puts("REPEAT"); else puts("WRONG");
} return 0; }

</blockquote></HTML>

AC 自动机

trie 是 AC 自动机的一部分

维护异或极值

将数的二进制表示看做一个字符串，就可以建出字符集为 $\{0,1\}$ 的 trie 树。

[[https://www.luogu.com.cn/problem/P4551|BZOJ1954 最长异或路径]] 给你一棵带边权的树，求
(u,v) 使得 u 到 v 的路径上的边权异或和最大，输出这个最大值。 点数不超过 10^5，边权
在 $[0,2^{31})$ 内。 > 题解 > > 随便指定一个根 $root$，用 $T(u,v)$ 表示 u 和 v 之间的路径的边
权异或和，那么 $T(u,v)=T(root,u)\oplus T(root,v)$，因为 LCA 以上的部分异或两次抵消了。 > > 那
么，如果将所有 $T(root,u)$ 插入到一棵 trie 中，就可以对每个 $T(root,u)$ 快速求出和它异或和最
大的 $T(root,v)$： > > 从 trie 的根开始，如果能向和 $T(root,u)$ 的当前位不同的子树走，就向那边
走，否则没有选择。 > > 贪心的正确性：如果这么走，这一位为 1；如果不这么走，这一位就会为
0。而高位是需要优先尽量大的。

参考代码： #include #include const int N = 100010; int head[N], nxt[N
<= 0; --i) { int c = ((x >> i) & 1); if (!ch[u][c]) ch[u][c] = ++tot;
u = ch[u][c]; } } void get(int x) { int res = 0; for (int i = 30, u =
1; i >= 0; --i) { int c = ((x >> i) & 1); if (ch[u][c ^ 1]) { u =
ch[u][c ^ 1]; res |= (1 <

</blockquote></HTML>

维护异或和

01-trie 是指字符集为 ${0,1}$ 的trie。01-trie 可以用来维护一些数字的异或和，支持修改（删除+重新
插入），和全局加一（即：让其所维护所有数值递增 1，本质上是一种特殊的修改操作）。

如果要维护异或和，需要按值从低位到高位建立 trie。

一个约定：文中说当前结点往上指当前结点到根这条路径，当前结点往下指当前结点的子树。

插入 & 删除

如果要维护异或和，我们只需要知道某一位上0和1个数的奇偶性即可，也就是对于数字1来说，当且

Last
update:
2020/07/16
22:08

2020-2021:teams:legal_string:字典
树_trie_lgwza https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%AD%97%E5%85%B8%E6%A0%91_trie_lgwza&rev=1594908525

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:28

仅当这一位上数字1的个数为奇数时，这一位上的数字才是1，请时刻记住这段文字：如果只是维护
异或和，我们只需要知道某一位上1的数量即可，而不需要知道 trie 到底维护了哪些数字。

对于每一个结点，我们需要记录以下三个量：

ch[o][0/1]指结点o的两个儿子，ch[o][0]指下一位是0，同理ch[o][1]指下一位是1。
w[o]指结点o到其父亲结点这条边上数值的数量（权值）。每插入一个数字x，x二进制拆分后
在 trie 上路径的权值都会+1。
xorv[o]指以o为根的子树维护的异或和。

具体维护结点的代码如下所示。

void maintain(int o) {
 w[o] = xorv[o] = 0;
 if (ch[o][0]) {
 w[o] += w[ch[o][0]];
 xorv[o] ^= xorv[ch[o][0]] << 1;
 }
 if (ch[o][1]) {
 w[o] += w[ch[o][1]];
 xorv[o] ^= (xorv[ch[o][1]] << 1) | (w[ch[o][1]] & 1);
 }
 // w[o] = w[o] & 1;
 // 只需知道奇偶性即可，不需要具体的值。当然这句话删掉也可以，因为上文就只利用了他的奇
偶性。
}

插入和删除的代码非常相似。

需要注意的地方就是：

这里的MAXH指 trie 的深度，也就是强制让每一个叶子结点到根的距离为MAXH。对于一些比较
小的值，可能有时候不需要建立这么深（例如：如果插入数字4，分解二进制后为100，从根
开始插入001这三位即可），但是我们强制插入MAXH位。这样做的目的是为了便于全局+1时
处理进位。例如：如果原数字是3（11），递增之后变成4（100），如果当初插入3时只插入
了2位，那这里的进位就没了。
插入和删除，只需要修改叶子结点的w[]即可，在回溯的过程中一路维护即可。

namespace trie {
const int MAXH = 21;
int ch[_ * (MAXH + 1)][2], w[_ * (MAXH + 1)], xorv[_ * (MAXH + 1)];
int tot = 0;
int mknode() {
 ++tot;
 ch[tot][1] = ch[tot][0] = w[tot] = xorv[tot] = 0;
 return tot;
}
void maintain(int o) {
 w[o] = xorv[o] = 0;
 if (ch[o][0]) {
 w[o] += w[ch[o][0]];

2026/01/14 03:28 5/6 字典树(Trie)

CVBB ACM Team - https://wiki.cvbbacm.com/

 xorv[o] ^= xorv[ch[o][0]] << 1;
 }
 if (ch[o][1]) {
 w[o] += w[ch[o][1]];
 xorv[o] ^= (xorv[ch[o][1]] << 1) | (w[ch[o][1]] & 1);
 }
 w[o] = w[o] & 1;
}
void insert(int &o, int x, int dp) {
 if (!o) o = mknode();
 if (dp > MAXH) return (void)(w[o]++);
 insert(ch[o][x & 1], x >> 1, dp + 1);
 maintain(o);
}
void erase(int o, int x, int dp) {
 if (dp > 20) return (void)(w[o]--);
 erase(ch[o][x & 1], x >> 1, dp + 1);
 maintain(o);
}
} // namespace trie

全局加一

所谓全局加一就是指，让这棵 trie 中所有的数值+1。

形式化地讲，设 trie 中维护的数值有 V_1,V_2,V_3,\cdots,V_n，全局加一后其中维护的值应该变成
$V_1+1,V_2+1,V_3+1,\cdots,V_n+1$。

void addall(int o) {
 swap(ch[o][0], ch[o][1]);
 if (ch[o][0]) addall(ch[o][0]);
 maintain(o);
}

我们思考一下二进制意义下+1是如何操作的。

我们只需要从低位到高位开始找第一个出现的0，把它变成1，然后这个位置后面的1都变成0即可。

下面给出几个例子感受一下：（括号内的数字表示其对应的十进制数字）

1000(10) + 1 = 1001(11) ;
10011(19) + 1 = 10100(20) ;
11111(31) + 1 = 100000(32);
10101(21) + 1 = 10110(22) ;
100000000111111(16447) + 1 = 100000001000000(16448);

对应 trie 的操作，其实就是交换其左右儿子，顺着交换后的0边往下递归操作即可。

回顾一下w[o]的定义：w[o]指结点o到其父亲结点这条边上数值的数量（权值）。

Last
update:
2020/07/16
22:08

2020-2021:teams:legal_string:字典
树_trie_lgwza https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%AD%97%E5%85%B8%E6%A0%91_trie_lgwza&rev=1594908525

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:28

有没有感觉这个定义有点怪呢？如果在父亲结点存储到两个儿子的这条边的边权也许会更接近于习
惯。但是在这里，在交换左右儿子的时候，在儿子结点存储到父亲这条边的距离，显然更加方便。

01-trie 合并

待补

可持久化字典树

待补

练习题

luogu-P6018-Fusion tree

luogu-P6623-树

参考链接

Oi Wiki

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%AD%97%E5%85%B8%E6%A0%91_trie_lgwza&rev=1594908525

Last update: 2020/07/16 22:08

https://www.luogu.com.cn/problem/P6018
https://www.luogu.com.cn/problem/P6623
https://www.luogu.com.cn/problem/P6623
https://oi-wiki.org/string/trie/
https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E5%AD%97%E5%85%B8%E6%A0%91_trie_lgwza&rev=1594908525

	字典树(Trie)
	简介
	代码实现
	应用
	检索字符串
	AC 自动机
	维护异或极值
	维护异或和
	插入 & 删除
	全局加一

	01-trie 合并
	可持久化字典树

	练习题
	参考链接

