
2026/02/02 13:21 1/3 反演变换

CVBB ACM Team - https://wiki.cvbbacm.com/

反演变换

算法思想

给定反演中心 O 和反演半径 r ，剩余点 A 的反演点 A' 满足 $|OA|×|OA'|=R^{2}$ 。

可以发现不过 O 的圆 B ，其反演图形也是不过 O 的圆 B' 。

圆 A 半径为 r_{1} ，其反演图形的半径为 ${\frac 1 2}({\frac 1 {|OA|-r_{1}}}-{\frac 1
{|OA|+r_{1}}})R^{2}$ 。

设 O 点坐标为 (x_{0},y_{0}) ，圆的圆心是 A ，坐标为 (x_{1},y_{1}) ，反演圆的圆心是 B 。

显然有

$x_{2}=x_{0}+{\frac {|OB|} {|OA|}}(x_{1}-x_{0})$

$y_{2}=y_{0}+{\frac {|OB|} {|OA|}}(y_{1}-y_{0})$

又因为 $|OB|$ 刚才已经算出来了，所以可以得到反演点坐标

过点 O 的圆 A ，其反演图形是不过点 O 的直线。（因为另一个点在无穷远，所以圆无穷大，就变
成直线了）然后求出圆心相对要反演的圆的对称点的反演点，然后连接反演点和 O 做个垂线，就是反
演的线了。

两个图形相切，他们的反演图形也相切。

代码练习

给定两个圆和圆外一点，求过这个点且与这两个圆都外切的圆，输出他们的圆心坐标和半径。

显然这个圆如果被那个点反演是一条线，然后另外两个圆还是圆，所以变成求公切线的问题，最后再反演
回去，最后要注意要外切，所以两个圆心要都和给定点在切线的同一侧才可以，判断一下就行了。

// 如果 A B 两点在直线同侧 返回 true
 bool theSameSideOfLine(Point A, Point B) {
 return sgn((A-s)^(e-s)) * sgn((B-s)^(e-s)) > 0;
 }

// a[i] 和 b[i] 分别是第i条切线在圆A和圆B上的切点 f[i]为1内切 为2外切
int getTangents(circle A, Point* a, Point* b,int* f) {
 circle BB=(*this);
 circle B=BB;
 int cnt = 0;

Last
update:
2021/08/05
01:21

2020-2021:teams:legal_string:
王智彪:反演

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E5%8F%8D%E6%BC%94&rev=1628097664

https://wiki.cvbbacm.com/ Printed on 2026/02/02 13:21

 if (A.r < B.r) {
 swap(A, B);
 swap(a, b);
 }
 double d2 =(A.p.x - B.p.x) * (A.p.x - B.p.x) + (A.p.y - B.p.y) * (A.p.y
- B.p.y);
 double rdiff = A.r - B.r;
 double rsum = A.r + B.r;
 if (sgn(d2 - rdiff * rdiff) < 0) return 0; // 内含

double base = atan2(B.p.y - A.p.y, B.p.x - A.p.x);
Point pa=Point(A.r,0);
Point pb=Point(B.r,0);
Point p0=Point(0,0);
if (sgn(d2) == 0 && sgn(A.r - B.r) == 0) return -1; // 无限多条切线
if (sgn(d2 - rdiff * rdiff) == 0) { // 内切，一条切线
 a[cnt] = A.p+pa.rotate(p0,base);
 b[cnt] = B.p+pb.rotate(p0,base);
 f[cnt] = 1;
 ++cnt;
 return 1;
}
// 有外公切线
double ang = acos(rdiff / sqrt(d2));
a[cnt] = A.p+pa.rotate(p0,base+ang);
b[cnt] = B.p+pb.rotate(p0,base+ang);
f[cnt] = 2;
++cnt;
a[cnt] = A.p+pa.rotate(p0,base-ang);
b[cnt] = B.p+pb.rotate(p0,base-ang);
f[cnt] = 2;
++cnt;
if (sgn(d2 - rsum * rsum) == 0) { // 一条内公切线
 a[cnt] = A.p+pa.rotate(p0,base);
 b[cnt] = B.p+pb.rotate(p0,base+pi);
 f[cnt] = 1;
 ++cnt;
} else if (sgn(d2 - rsum * rsum) > 0) { // 两条内公切线
 double ang = acos(rsum / sqrt(d2));
 a[cnt] = A.p+pa.rotate(p0,base+ang);
 b[cnt] = B.p+pb.rotate(p0,base+pi+ang);
 f[cnt] = 1;
 ++cnt;
 a[cnt] = A.p+pa.rotate(p0,base-ang);
 b[cnt] = B.p+pb.rotate(p0,base+pi-ang);
 f[cnt] = 1;
 ++cnt;
}
return cnt;

2026/02/02 13:21 3/3 反演变换

CVBB ACM Team - https://wiki.cvbbacm.com/

} // 两圆公切线 返回切线的条数，-1表示无穷多条切线

Point LA[1010], LB[1010];
circle ansc[1010];
int fl[1010];
int main() {
 int t;
 cin>>t;
 circle c1,c2;
 circle cc1,cc2;
 Point pt;
 while(t--) {
 c1.p.input();
 scanf("%lf",&c1.r);
 c2.p.input();
 scanf("%lf",&c2.r);
 pt.input();
 iv=Inversion(pt,10.0);
 Line lt;
 int f;
 iv.getCircleInv(c1,lt,cc1,f);
 iv.getCircleInv(c2,lt,cc2,f);
 Line l1,l2,l3,l4;
 circle C1,C2,C3,C4;
 int q = cc2.getTangents(cc1, LA, LB, fl), ans = 0;
 for (int i = 0; i < q; ++i) {
 Line lt=Line(LA[i],LB[i]);
 if (lt.theSameSideOfLine(cc1.p, cc2.p)) {
 if (!lt.theSameSideOfLine(pt, cc1.p)) continue;
 iv.getLineInv(lt,ansc[ans],f);
 ans++;
 }
 }
 printf("%d\n", ans);
 for (int i = 0; i < ans; ++i) {
 printf("%.8f %.8f %.8f\n", ansc[i].p.x, ansc[i].p.y,
ansc[i].r);
 }
 }
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E5%8F%8D%E6%BC%94&rev=1628097664

Last update: 2021/08/05 01:21

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E5%8F%8D%E6%BC%94&rev=1628097664

	反演变换
	算法思想
	代码练习

